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INTRODUCTION

The Phase II Study was undertaken to investigate the closed-loop
data reduction techniques described in the first Study Report[m]
and to investigate some new ideag that had evolved since that
feport was written. With the avéilability of the computer hardware
at NASA/ARC, it réquired only the addition of the interface
hardware between the Oscar-F Data Reader and the Computer, plus

the associated software,'to impl;ment what was initially called

the Phase II simulator. Thié simulator has now become the FILMCLIP
System which has provided NASA/ARC with closed-loop ionogram
prqcessing capability since September 1968. Since that date,-

many thousands éf topside ionograms have been reduced to electron
density profiles, including high altitude ionograms that cannot

be processed on an open-loop basis. The FILMCLIP System ﬁill

continue to be used in the development of new computational

software that is described in this report.
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ABSTRACT

High éltitude topside ionospheric sounder data is being provided
" from both the Alouette II and ISIS-1 satellites. The resulting
ionograms are frequently so difficult that open-loop processing
techniques are inadequate to cope with the problem. Closed-loop
data reduction meﬁhods offer a praétical solution to the problem
of reducing ionograms from high altitude soundiﬁgs, and at the

same time provide improved capability for processing all ionograms.

The FILMCLIP System_is a Closed-Loop Ionogram Processor for the
reduction of topside ionospheric sounder data recorded on 35mm
Film. This system was implemented at NASA/ARC as part of a
continuing study to develop methods of automating the data reduction
of topside ionogfams. The system has worked so well that if is

now used nearly full time for film ionogram data reduction on a

production basis.

The final data reduction system, which will'acquire input data
directly from magnetic tape, is known as the TAPECLIP System;
Software is being developed for the TAPECLIP System that will use
much of the existing software. This software is organized
together with new software to exploit the new closed—loop
processing techniques that.are now available. The TAPECLIP
software is being developed and checked out ﬁnder éimulated

conditions on the FILMCLIP System.
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A number of different methods for computing electron density
profiles from topside ionospheric sounder data are presented.
The method of Inverse processing is a variation of Jackson's[13]
parabolic in log N lamination method. Lamination heights are
preselected at equally spaced increments of true height. The
scaled X-Trace data is curve fit so that the virtual depth, hy,

is known for any frequency f on the X-Trace. The plasma frequency
fN is then adijusted in an iterative procedure for each lamination

boundary until computed points in the h'{(f) plane match the curve

fit X-Trace.

Inverse mixed-mode processing provides a way for automatically
combining scaled data from both the X and O-Traces to provide a

composite electron densiﬁy N(h) profile.

‘The Matrix method of ionogram data réduction uses an analytic
model of the N(h) profile. In this method the coefficients of a
mathematical model of the N(h) profile are adjusted to minimize
the error between scaled and computed valﬁes of h'(fi) in a

welghted least squares sense.

The method of Horizontal processing provides a means for first
order correction of the effects of horizontal gradients of
electron density in the satellite orbital plane. The method of

Horizontal processing recognizes that the topside sounder ionogram
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data and the resultant computed electron density profile are
both functions of time due to the satellite velocity with

respect to earth based coordinates.

New subroutines that were developed in the course of optimizing
some of the computational software as follows: |
a. Inverse mapping to specified £
b. Simplified solution of a matrix equation
c. Optimal step size by Golden‘Section Search
d. Matrix pseudoinve;se computation

" The weighted least squares approximation method of Mallinckrodt

was utilized in the matrix method.

“An investigation was conducted to show that values of fH’ ¢, and
hS between accurately computed points could be obtained by
interpolation. The use of interpolation has greatly reduced the
“computer work load in the determination of values for these

paramoters.
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SECTION I

FILMCLIP SYSTEM

1,0 INTRODUCTION

The FILMCLIP System is a Closed-Loop Ionogram Processor that is
now in use on a production basis for the reduction of topside
ionospheric sounder data recorded on 35 mm film. The FILMCLIP
System was implemented in September 1968 on a minimum

cost basis as part of a continuing study for NASA/ARC on advanced
equipment and techniques for topside ionospheric sounder data.
reduction. Since that date many thousands of ionograms have been
reduced to electron density profiles, including ionograms from
high altitude low density soundings. The latter are almost
impossible to reduce on.an open loop basis due to the difficﬁlties
involved in identifying the portion of the X-Trace due to vertical

propagation.

In early 1968, the Computation Division at NASA/ARC made availéble
an IBM 1800 Computer, IBM 2250 Graphic Display Unit, and IBM 360/50
Computer to the Space Sciences Division onba second shift,
non-interference basis. With the availability of this computing
equipment, Astrodata proposea that a Phase II simulator be
implemented at NASA/ARC uéing the existing Oscar-F data reader

and the above computers to provide a closed-loop film ionogram

. processing capability for investigating advanced processing

algorithms, and for reducing film ionograms on a production basis.

sv



The follow-on study for the development of improved topside
ionogram data reduction methods has a number of objectives as

follows:

a. Improved closed-loop processing methods whiéh take

advantage of some of the newer optimization techniques,

b. Relegaté more of the ionogram pattern recognition task

to computer software.

c. Take better advantage of all the data in an ionogram

for production ionogram data reduction.

d. Correction of known deficiencies in existing data

reduction methods.

e, Use the FILMCLIP System as a simulator for development

of TAPECLIP data reduction software.

1.1 DESCRIPTION

The FILMCLIP System is an on-line interactive computer processing
system that haé been operational at NASA/ARC since September 1968.
A functional block diagram of the FILMCLIP System is shown in
Fig. 1=-1. The performance characteristics of the FILMCLIP

System were defined by Astrodata and the details worked out in a
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series of conferences with NASA/ARC and Informatics, Inc. The

operational software for the systeim was provided by Informatics.

A number of technical reports and papers have been written about

...1]

the FILMCLIP System{1 to which the reader is directed for

specific detailed information.

The Scaling Converter in the system was built by Astrodata as a
piece of interface hardware between the Oscar-F data reader and
the IBM 1800 Computer. Akfunctiohal block diagram of the Scaling
Converter is shown in Fig. 1-2. A detailed description of this
unit, including logic diagrams and schematics, is contained in

the Instruction Manual. L12]



FUNCTIONAL BLOCK DIAGRAM
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SECTION IT

INTERPOLATION

2.0 INTRODUCTION

Significant savings in compﬁtér time can be achieved by simple
interpolation'ofvparameter values between accurately computed
points, compared with direct computation of the parameters each

time new values are needed. The feasibility of interpolating
.ihtermediate values of gyrofrequency fH and satellite height hs

were investigated. The dip angle 6 changes so slowly that tests for

interpolation accuracy for 6 were not included in this investigation.

2.1 INTERPOLATION OF £

In the data reduction of topside ionograms to electron density
profiles, the X~Trace is used almost exclusively. This is
primarily true because the X~Trace is nedrly always continuous

at the low frequency end down to the cutoff frequency, while the
low frequency end of the O-Trace is usually missing. Since the
reflection point of the extraordinary wave is dependent on both
the electron density N and the flux density B of the earth's

| magnetic field, it is necessary to compute values of the earth's
bmagnetic field each time the group path integral in egn. (zfl)lw]

“is evaluated.



h
r

ny(e) = J urmm),Bn),6 (), £1dn (2-1)

h
s

it

where f sounder pulse frequency

hé'= virtual depth of reflection of frequency f

hs = true height of satellite

hr = true height of reflection of frequency f
u' = group refractive index

N = electron density in electrons/cm3

w
i

earth's magnetic induction in gauss

0 = magnetic dip angle

It is convenient to work with the electron plasma frequency fN

and gyrofrequency fH so that eqn. (2-1) becones

hr |
h! (£). = f wx,t,¢)an (2-2)
hs
£..\2
where X = <j§>
£
—
Y= f
¢ = 90° - o for vertical-propagaﬁion
fy = vyN712400
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Direct computation of the geomagnetic field as a subtask in the
evaluation of the group path inteqgral takes a significant amount
of computer time. This computation is based on a spherical
harmonic expansion representation of the field with coefficients

from Daniels and Cain.l17]

In an effort to réduce the numbef of direct computations of the
geomagnetic field, a task was set up to evaluate the possibility
of using interpolation as a means for determining the gyro-
frequency. The objective of the task was to provide a comparison

between directly computed and interpolated values of fH'

A cross section of the satellite orbital plane was set up as
shown in Fig. 2-1 with boundaries 400 km apart vertically between
200 km and 3000 km, and approximately 220 km apart horizontally,
Which is the average distance{thg‘Alouette I1 satg}lite trayg}gﬂ}
between corresponding frequency markers from one ionogram to.

the next. The time between corresponding frequency markers is
approximately 31 seconds, and the period of useful data covers
roughly one-half the ionogram which is about 1 part in 500 of

the orbital period. From this it is reasonable to assume that
the velocity of the satellite is essentially constant over the

period of the X-Trace, so that linear interpolation of fH with

respect to time at constant height should be feasible.

LE-3
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In the vertical dimension fH varies approximately as the inverse
cube of the distance from the center of the earth. The objective
here was to find at what interval it is necessary to compute fH
so that intermediate values could be obtained with adequate
accuracy by inverse cube interpolation. The equation fér inverse

cube interpolation between interval boundaries is

R + h\3
fy = \® ¥ H (2-3)
hT - th

where R = =t
r - 1

. e S-S
r =V fup/fur

h = height of desired fH

hT = height of interval top

hB = height of interval bottom
hB < h < hT

fHT = gyrofrequency at hT

fHB = gyrofrequency at hB

The detailed results of the fH interpolation tests are contained
in Informatics chhnical'Notes[jfﬁl. The worst

case error for fH in these tests was less than 1 parF in 3000,

and this occurred with inverse cube interpolation at 400 km.

.From these resﬁlts we conclude that by computing the gyrofrequency
at 400 km intervals vertically, values of fH can‘be obtained

with adequate accuracy by inverse cube interpolation vertically

and linear interpolation horizontally.

I1-4



Where previously fH was computed directly for each of 3 or 4
iterations per data point and for 20 to 30 scaled data points

per ionogram, the direct computation for fH can be reduced to a
maximum of 8 per ionogram for Alouette II, or a maximum of 10 per

ionogram for ISIS~1, which has an apogee of approximately 3600 km.

2.2 INTERPOLATION OF h

A separate part of the task, described in paragraph 2.1, was to
check the accuracy of linear interpolation of satellite height
with respect to time between end points computed once per

ionogram.

The position of the satellite as a function of time is computed
from an orbital program in which the orbital elements for each
satellite are periodically updated. The interpolation tests were

run on different portions of the orbit of Alouette II including

2
a®n_
a2

the case for maximum

The detailed results of the hS interpolation tests are contained
in Informatics Technical'Notes[s_S]. The worst

case error for hs in these tests was less than 1 part in 2500

in the vicinity of 530 km. From the results of these tests we
conclude that it is only necessary to compute the position of the
sntellite via the orbital program once per ionogram. All other

values of hs can be obtained by linear interpolation with respect

to time,

I1~-5



- SECTION III

INVERSE PROCESSING

3.0 INTRODUCTION

A method of reducing topside sounder ionograms to electron density
profiles using a lamination technique has been developed by
(13

Jackson . For convenience this method of data reduction

is represented in symbolic form by

h' (£f) — N(h) (3-1)

it

where h' virtual depth in km due to vertical propagation

f»ﬁ sounder frequency in MHz
N = electron density in electrons/cm3

h = true height of reflection in km

Since the N(h) profile can theoretically be computéd from the X and

O-Traces, and a portion thereof from the Z-Trace, the symbolié
representation can be expanded to

h;(f) —2» N (h) (3-2)
hé(f) —e N (h) (3-3)
hé(f) -2 N (h) (3-4)

From the equation of the group path integral

h
r

h'(f) = j” u'(X,Y,6)dh (3-5)

Bg
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group refractive index

i

where u'
« = ()
- f
fu
f

angle between earth's magnetic field and

-
]

direction of vertical propagation

hr= reflection height

the reverse relationships can be represented by

N(h) —= b} (f) (3-6)
N(h) — Bl (E) (3-7)
N(h) —= Rl (£) (3-8)

It follows that an N(h) profile, computed from scaled X-Trace
data, can be cross-checked by comparing scaled and computed

O-Trace. In symbolic form

he (£) —= N(h) — h (f) (3-9)

This is the method presently used in the FILMCLIP System described

in Section I.

For convenience in discussing this method, the following terminology

has been adopted:

I1T-2



Forward Processing h'(£f) —> N(h) (3~10)

Reverse Processing N(h) — h" () (3-11)

The method of Inverse Processing, which is discussed in the
remainder of this section, uses the Reverse Processing algorithm

in an iterative loop.

In the Inverse Processing method; lamination heights are
preselected at equally spaced (50 or 100 km) increments of true
height. N is assumed to decrease monotonically‘with h, and the
N(h) distribution between laminations is assumed to be parabolic
in log N,.except the first which is linear in log N. The scaled
X-Trace data is curve fit so that the virtual debth hé is known
for any frequency f on the X~Trace. An iterative procedure is

then used to find

hé(f-) - hé(f.)

£, 3 ] l.| <e < .001 (3-12)
X ]

When computing an N(h) profile from X-Trace data, the height of
reflection is a function of both the electron density N and the
gyrofrequency fH. With fNj or fj the trial variable and hj
constant, the only variation in ij from one iteration to the
next is due to motion of the satellite, and that can be determined
by simple linear interpolation with respect to time, as described
in Section II. All of the variables on the right hand side of
the group integral egn. (3-5) are known, and therefore ﬁ;?fg?

can be computed directly.

IIT-3



In the Forward Processing method, the gyrofrequency ij and

true height hj are both unknown variables on the right hand side
of‘eqn. (3-5). Consequently with ij the trial variable, a new

value of hj must be computed in successive iterations until the

value of ij used in the true height calculation is the same as

the actual value of ij at altitude hj;[lﬂ

Lockwood[lﬂ points up another problem with Forward Processing,

and that is the iterative solution diverges if the slope of the
height of reflection curve has a larger absolute value than the
slope of the gyrofrequency curve. As far as we know now, this

problem does not exist with the Inverse Processing method.

Enough experimental work has been done at NASA/ARC to demonstrate
that the basic Inverse Processing algorithm is valid. Some of

the techniques described in this section have not yet been verified.

3.1 DESCRIPTION

In Inverse Processing, lamination heights hj are selected at equally

spaced increments of true height; i.e., 50 or 100 km. X~Trace data,

scaled in the conventional manner, is curve fit so that h;(f) is

defined for any frequency from fXs to the upper frequency limit of
the X-Trace on the}ionogfam being reduced. In the TAPECLIP System,
h;(f) will be known for every line in the X~Trace so that curve
fitting will not be required. A simple linear interpolation will

suffice for data points at frequencies that fall between lines.

Irr-4



For each lamination, except the first, the value of N at the
lamination bottom at true height hj may be approximated for the
first iteration by extrapolation using a parabolic in log N
equation.

[13]

The basic parabolic in log N equation , with lamination

boundaries as shown in Fig. 3-1, is given by

N N 2
h = hj—2 + aj.1 log Nj—z + bj—l [log Nj—z] (3-13)

Py-2r My-2
——% —-~h,N Lamination j-1 aj—l’bj—l

Byoyr Ny Y

k!

' Lamination j

5\
h-' N' \\
J J
LOG N —=

Fig. 3-1. Parabolic In Log N Representation

Rewriting in terms of N with N = Nj’ the first trial value of

electron density for each lamination is given by

N. = N e? (3-14)

III-5



where z =

' N._ 1
and aj = a5, + ij_l log ﬁifz

Since b. is unknown, we use bj—l as a first approximation. The

sounder transmitter frequency fj is computed from the relation

2 2
fys * //ij + Ay

3 2

i

where fNj //Nj/12400

and the computed value of virtual depth, h%(fjl), is then given

by egn. (3-5).

In the first lamination the variation in electron density is
assumed to be linear in log N. The trial value of N at the

bottom of the first lamination may be estimated from the

equation _
(?&i&)
a
i , 2
N2 = Nle

where a, is derived empirically.

I1I-6
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An alternative method of establishing initial values of Nj at
each lamination boundary was described in Section III of the
Study Report, Part IUS]. In this method, values of Nj are
linearly extrapolated from the two previous ionograms in the
same pass at constant lamination boundary levels. The
extrapolation method should work for a large class of ionograms

where the gradients at constant true height

IN. |
SN (3-17)

9 hj=constant
vary slowly throughout the pass.
1f hé(fjl) < hé(fjl)’ as in Fig. 3-2, the trial value of le was
too large. For the second iteration choose
sz = le(l + a) (3-18)

where a = .0l with the sign - for h' < h'

and + for h' > h!

The second subscript in the above notation is the iteration count.

1 ¥ ' s
If hx(ij) > hx(sz)' the trial value of sz

straight line thru points hé(fjl) and hé(sz) will intersect the

was too small. A

X-Trace at fj3’ as shown in Fig. 3-2 where the first two points
are on opposite sides of the X~-Trace, or in Fig. 3-3 where the

first two points fall on the same side of the X-Trace.

I1I-7
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For the third iteration,

f.. = f.(£, - £_ . -
wy = 7 E5(Ey = £) (3-19)

and from egn. (3-5) a third point HZTE;;T is computed. A segment
of a circle passing thru the three computed values of El??;? will
intersedt the X-Trace at freguency fj4 from which it should be
possible to compﬁte the final value of Nj from egn. (3-19) and

the relation

N(hy) = 12400 fNj2 (3-20)
without computing h;(fj) a fourth time from egn. (3-5). Of course
this last conclusion needs to be verified, but if it is valid it
will help considerably in reducing the computation time required

to compute an N(h) profile.

If the criterion of eqn. (3-12) is met on any of the first three
iterations, the iterative sequence for that lamination is terminated

and the program continues to the next lamination.

The lamination bottom of the last lamination in the N(h) profile
will be dependent on the scaled data point h;(f) at the highest
frequency on the X-Trace. For this case the height of reflection

is unknown, and so the Forward Processing algorithm is required.
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The objectives of the Inverse Processing method are as followgt

Minimize the computer time required to compute an

N(h) profile.
Simplify the implementation of mixed-mode procegsing.

Optimize the spacing between lamination bound#éries of

the N(h) profile.
Make the lamination boundaries the same for all

ionograms for convenience in interpolating and

extrapolating values of N(h), fH and ¢.
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3.2 STEP SEQUENCE

The following is a description of the sequence of steps for

computing an N(h) profile from scaled X-Trace data by the Inverse

Processing method. The following step numbers relate to the

processing blocks in the flow diagram of Fig. 3-4.

l. Scale the X-Trace in conventional manner .
2. Curve fit the X-Trace with a suitable function.

3. Compute the plasma frequency at satellite height

fN(hl) = /‘fl(fl - le)

4. Select lamination boundaries hj at equally spaced
increments of true height.
a 50 km < (hy = h,) < 100 km for step 4b.

< 150 km for step 4c.

b. IF (hl .LE. 1500.) hj m(50) km

Rl

m(100)km

it

c. IF (h1 .GT. 1500.) hj

j = 2’ 3] ® e u @ p J' m an integer
5. Initialize the iteration count, ITCNT = 0

6. Select trial value for fNj = Nj715356
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6.1 First iteration

)

a. First lamination N, = N,e
where a, is derived empirically
b. Subsequent laminations Nj = Nj_leZ
(a2 4b (h h.)
. -a, - a. - . . - s
where z = J // J j-1 J-1 J
2bj~l
Ny-1
aj = aj_1 + 2b -1 log N,
J
ay, by b2 =0
j=3, 4, cc.ces J
6.2 Second iteration sz = le(l + a)
where a = .01 with sign - for h' < h'
+ for h' > h'
6.3 Compute h'(fjl) and h'(szf, processing Fig. 3-4 hlocks
7 thru 19.
6.4 Compute equation of a line thru the two points in step 6.3.
Ri, - Riy ,
s = flg*:*?ll slope /
j2 il
r = 31 - sfjl intercept ;
h! = sf + ¢
X
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3-4.
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6.6

10.

11.

Solve for frequency fj3 at the intefsection of the

straight line and the X-Trace.

Compute fNj = //ij(fj3 - ij) ;
/
i

Compute hé(fj3), processing Fig. 3-4 blocks 7 thru 19.

Increment the iteration counter  ITCNT = ITCNT + 1

2 2
£.. + //f o+ 4Af .
Compute fj = Bl H] NJ
2

Check if fj <_fmax

a. YES, the trial frequency i$ still on the X-Trace.

Compute hé(fj) on branch to Fig. 3-4, block 10.

b. NO, there is no more X-Trace data. Branch to

block 22, Fig. 3-4.

Compute Tj = t(fj) from time and frequency marker

calibration data.

At constant hi’ in with i =1, 2, ...., j is computed
by linear interpolation with respect to time, as
described in Section II, to compensate for the change

in satellite position.
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12.

14.

15.

16.

In the first lamination the slope of the N(h) curve,

which is linear in log N, is given by:

h, - h

2 Nz
log =—

Ny

where hl = satellite height

As the computation of N(hj) progresses for each
lamination boundary, the change in satellite height

can be determined by linear interpolation with respect-
to time, given the slope of the orbit for that,iOnogram,
Ah t

8. The new value of N(hlj, Tj) for the j h,iamination

At /
is computed from h. .-h
19 "2
a2
Njy = Npe
£..
» : ¢
Compute Yi = - '
J !
i = l, 2, .oasy‘/’}j
Compute xi = 1 - Yi ,

v
i

(Niml>
. a. . + 2b,_, log ]
i i-1 i-1 N: 5

N. > i= 3' 4' .no»o, j
> ayr bl’ b2 = 0
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17.

18.

19.

20.

21.

22,

Compute hé(fj) using eqn. (7),[1q.

Compute error ratio and compare with limiting value

h!{£.) - h! (£,
< ¢ J) % J) < ool
h%(fj)

Compare iteration count with integer 3.

a. If <, continue next iteration, step 6.

b, If >, compute N(hj), steps 20 and 21.

Pass a smooth curve (segment of a circle) thru points
h;(fjk), k =1, 2, 3, intersecting the X~Trace at fjd'
Compute iy, = ,/353.4(fj4 - )
N(h.) = 12400 f, 2
3] NJ

Compute N(hJ) by Forward Processing, where hJ is the

~bottom of the last lamination. Output N(hi),

i:l’ 2, ..5" j
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3.3 MIXED MODE

The useful portions of the O and Z-Traces can be used in the
Inverse Processing method as well as X-Trace data as described in

in paragraph 3.1.

X, 0, and Z-Trace data are scaled in the conventional manner and
curve fit so that h;(f), hé(f), and hé(f) are defined for all
frequencies on the useful portions of their respective traces.
Mixed-Mode Inverse Processing begins with X-Trace data as in
paragraph 3.1. At each lamination boundary at the point in the
program where the sounder transmitter frequency fj is computed,
as in eqn. (3-15), the corresponding frequencies for the 0O and

Z-Traces are also computed.

2 2
£ .. + //f O+ 4F
F . o= Al _H NJ (3-21)
X7 2
foj = fNj (3-22)
£,5 = Ty = fpy (3-23)

A comparison is made with the curve fit O and Z-Trace segments

to see if there is an hé(f) at frequency f@j or anvhé(f) at

frequency fzj, For this example, assume that an h

The Reverse computation

é(foj) does exist.

N(hj) e hé(fjl) (3-24)
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gives the first point for lamination j on the h'(f) plane. The
iterative sequence continues as in paragraph 3.1, except for the

third iteration where

£f.. = £, -
N j (3-25)

from which a third point EZTE;;T is computed. A segment of a
circle passing tﬁru the three computed values of HZTE;T will
intersect the O-Trace at frequency fj4' from which it should be
possible to compute the final value of'Nj from egqn. (3-25) and

egn. {(3-20).

To compute N(hj)with respect.to curve fit Z-Trace data use eqn.

(3-23) and the Reverse computation

N(hj) — hz(fj) (3-26)

At any lamination boundary hj’ it would be possible to compute an
N(hj) with respect to each of the X, 0, or Z-Traces, assuming the
traces have been scaled at the related sounder pulse frequencies.
The value of N(hj) would be slightly different for each trace

and would depend‘of course on the delay contribution of the

previous laminations.

On the basis that the O-Trace is usually thinner than either the
X or Z-Trace, the program logic for Mixed Mode Inverse Processing
might be to compute N(hj) with respect to the O-Trace whenever

possible, otherwise use X-Trace data. When processing with
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respect to the O-Trace, corresponding hé(fj) points could be
computed to assist in defining the vertical reflection portion

of a difficult X-Trace.
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SECTION IV

MATRIX PROCESSING

4.0 INTRODUCTION

One of the problems an operator faces when processing ionograms
with the FILMCLIP System occurs after one processing iteration

represented by

hé(fj) —3p N(hj) —*-hé(fj)

If the computed O-Trace data points EZTE;T don't match closely
enough the identifiable O-Trace on the ionogram, the operator
must change some of the scaled data points on the X-Trace in an
effort to modify the N(h) profile so that the computed EZ?E;T
data points will match the O-Trace more closely. This is really
a very complex, multi~dimensional; non-linear problem that a

- human being is not equipped to handle, except by triél and error.
With the FILMCLIP System an operator can make adjustments in the
positions of the scaled data points on the X~Trace and observe
the results referred to the O-Trace in successive iterations
until a suitable match is achieved. With experience, operators
become quite skilled in making adjustments in this iterative
loop, but it still remains a time consuming and inefficient

procedure.
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The matrix method provides a logical means whereby the computer
can use all the normally available information in an ionogram

to compute an N(h) profile in a weighted least squares sense.

The computation time to compute an N(h) profile by the matrix
method will increase substantially over the time required for
either the Forward or Inverse methods. However, it will take

the operator out of the iterative loop for closed-loop

processing so that there may be an overall reduction in elapsed
time. In addition, the matrix method offers some unique advantages

not available in other methods.

The matrix method of ionogram data reduction uses an analytic
model of the N(h) profile rather than the lamination model of
Jackson[lﬂ. The concept behind matrix processing is to set up
a mathematical model of the N(h) profile and then adjust the
coefficients of the mathematical model to minimize the error

between scaled and computed values of h'(fﬁ in a weighted least

squares sense,

A set of scaled h'(fi)data points from an ionogram is the input
prescription vector to the matrix program. The data points can
be scaled from both the X and O-Traces and even the Z-Trace when
it is available. A weighting coefficient is assigned to each

data point using an arbitrary scale from 1 to 10. Good data

1y=2



points are weighted higher than questionable data points so that
the resultant N(h) profile is influenced more by the data points
in which the operator has greater confidence and to a lesser

extent by data points with a lower weighting factor.

The particular model used for matrix processing is a ratio of
polynomials of the(type used in synthesizing electrical filtef
transfer functions. It is perhaps one of those fortuitous f
circumstances, but when a set of N(h) values were input t@la
slightly modified Astrodata proprietary program for filter
synthesis, a curve fit within 1% was achieved the first time the

right number of poles and zeros were specified.

With the matrix method it is desirable to minimize the number of
coefficients required to model the N(h) profile, because some

3 where m is the order

matrix operations on the computer go up as m
of a square matrix. The rqots of the numerator and denominator can
be plotted as poles and zeros in the cbmplex s-plane. A plot of
the poles and zeros for one model is shown in Fig. 4-1. In this
model there are four conjugate complex poles, two real poles, and
one zero at the origin. Other models investigated have used five
or six complex poles with from two to five zeros at the origin and
no real poles. The number of adjustable coefficients required for

these models varies from 10 to 12. Kinkel[21] proposed a model

with 5 variables which turned out to be an insufficient number.
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The choice of the particular zero/pole representation for an

N(h) profile depends on a number of factors, such as the ratio

of minimum to maximum electron density and the shape of the curve.
A ﬁittle experience in curve~fitting a variety of N(h) profiles,
u%ing Program NHMODEL in Section 4.4, will provide the, basis

f@r selecting the initial values for coefficients of the model

used in the matrix method.



4.1 DESCRIPTION

The general form of the analytic model used in matrix processing

is shown in eqn. (4-1).

where s

n

Eqn. (4-1) is

s~plane using

_psn
N(s) =

2

(s+02)[(s+om)2 + Bm

]

= j(n-h)

= true height above mean sea level in km x 10

(4-1)

3

= a constant > maximum satellite height in same

units as h

= scale factor

]

It

real domponent of pole position

= imagihary component of pole position

= /71

=0, 1, 2 index of real poles

=1, 2, cese, M index of complex poles

=1, 2, 2000, 5 index of zeros at origin

a representation of an N(h) profile in the compléx

two real poles, four conjugate complex poles, and

a zero at the origin. A representative distribution of poles and
!

the zero are shown in Fig. 4*14! In this representation, only
H .

the magnitude of the function is considered.

The denominator of

the function for a given value of s; on the positive imaginary

i
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s~plane

ZERO/POLE REPRESENTATION OF N(h) PROFILE
FIG. 4-1



axis, is computed as the product set of all the vector magnitudes,
kali. The numerator of the function is the vector magnitude z

along the imaginary axis from S, to the origin multiplied by the

scale factor p.

Then the value of points N(si) is given by egn. (4-2).

P Zin
TT Iex 4
k=1

where s; = j(n-hi) as in eqgn. (4-1)

i=1, 2, e o6 2 o F I

Define a column wvector

T -
a = (ul, Ogr seens aK) (4-3)
OLl = Ol
(12 = 02
(13 = 0'3
a, = By
Og-1 = M
ag = By

All of the variables o and B in eqn. (4-1) are represented by a.
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In this notation

I = number of scaled data points in the
prescription vector
K = number of degrees of freedom in the

mathematical model of the N(h) profile

An initial set of values of the o vector is established to
represent a trial function of N(hi, a) for a set of scaled hi'(fi)
data points from an ionogram, where i =1, 2, ...., I. The
hi'(fi) will be a composite set of points scaled from both the

X-Trace and O-Trace, and even the %Z-Trace if it is available.

We wish to approximate the set of scaled data points by a

vector H(fi, o) in the h'(f) plane which is a mapping of points
from the approximation N(hi, a) in the N(h) plane as shown in
Fig. 4—2.[23] These points are computed using Reverse Processing
as defined in Section III. The value of h, for each point

N(hi’ a) is computed by successive approximation in an iterative

loop so that

< ¢t < .001 (4-4)

This iterative loop is described in paragraph 4.2.
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h'(f) plane N(h) plane

Fig. 4-2. Mapping of Corresponding Points in

the h' (f) and N(h) Planes

The differential of the function H(fi,g) can be approximated

by a small increment on each o, as in egn. (4-5).

k

B 5 oH(F, a)
M(E, o) = D) a Aoy (4-5)
k=1 %%
l = l, 2, ® 8% a g I
Egn. (4-3) expressed in gradient notation becomes
AH(fi, a) = Vgﬁ(fi, a)ha (4-6)

i"“:lp 2, noee’I

_ BH(E,, @) BH(E;, 2)
where Vgﬁ(fi, g) = *—“§EI-* 7 seweg —-§EE——*

' T
(Aal, ves ey AaK)

o>
Q
H
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We wish to find

AH(E,, @) 2 h'(f;) - H(E,, o) - AH(E;, a) =0 (4-7)

isl' 2' e o & 8 @ I

Rearranging terms and normalizing by dividing both sides by
H(E,, )
h'(£;) - H(E;, ) AH(E, o

= — (4-8)
H(E,, a) H(f;, @)

Combining eqn. (4-6) and egn. (4-8) and expanding in matrix form

gives
ey 817 819 reee Ayg Aal
e, a21 a22 seee Bop Aaz
. = : : (4-9)
* Ao
eI aIl aIz e 8 ® ® aIK aand -
h' (£,) - H(E;, w)
where ei = -
Il(fi, a)
. dH(E,, a)
ik
H(E;, o)oa,
i = 2, 3; e » 8 o g I

k=l, 2, -.».,K
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For i 1,
H .
h (fl) = 0

where £

i

1 fxs

consequently e, and a);, k =1, 2, ...., K, must be redefined in
terms of fregquency because AH has no meaning at satellite height.

For this case

e =
! F(hy, o)
aF(hlr 9_)
a p=—
1k F(hl' Q)aak
In compact matrix notation
E = A Aa (4-10)
In eqn. (4-9) there are I equations with K unknowns. With
I > K there are more equations than unknowns since typically
20 < I < 30
and 10 < K < 12
A least squares fit solution[w] can be obtained by first
multiplying both sides of eqn. (4~10) by é?, which gives
A'E = [aTAlAa (4-11)
where T = the transpose

Iv-10



Then a least squares estimate of the adjustment vector Aa is
given by

R -1
rg = [ATA]  ATE (4-12)

"We wish to assign a weighting coefficient, w, to each scaled

ii’
h'(fi) data point 'in order that good data points exert a greater
influence on the least squares approximation of N(h, a) than

questionable data points. Define a diagonal matrix of weights

as follows:

W= 33 (4-13)

The weighting matrix W is incorporated in the least squares fit
solution of Aé to give a weighted least squares adjustment vector

as follows:

ra = [g: @] ATwE (4-14)
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For each iteration then

L VR (4-15)

ik

Q

iteration count

B
il

where

which gives a new set of coefficients for the analytic model

N(h, ). The iterative cycle continyes until

Auk

S < e < .001 (4-16)
k

max

A more direct measure of how well the computed data points
H(fi, ¢) match the scaled data points h'(fi) might be obtained
by defining a cost functional J as the sum set of the weighted,

. normalized error squared.

I
J = Z d, (4-17)
i=1
T T
where D= [dy, dys -vvey d;1” = E'WE

The iterative cycle would then continue until

n+1l n

-~ J

n

J
I <€ (4-18)

J

where n = iteration count

A flow diagram showing the major prdcessing steps in a program

for the matrix method is shown in Fig. 4-3.
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4.2 STEP SEQUENCE

The following is a description of the gaguence of steps for

computing an N(h) profile from scaled X-Trace data by the Matrix

Processing method. The following step numbers relate to the

processing blocks in the flow diagram of Fig. 4-3.

Scale the X, 0, and Z-Traces of an ionogram in

conventional manner.

Assign a weighting coefficient to each scaled

data point.

Establish initial values of coefficients for O
Program NHMODEL has been developed for doing this

and is described in paragraph 4.4.

Compute values of hi corresponding to frequencies fi

of scaled data points h'(fi) such that

£, - £,
i i
£,

i

|< €

. . . 2
This is accomplished by a one-~dimensional searchl??]

using successive approximations and is described in

paragraph 4.3. This makes possible comparison of
computed and scaled data points at the same frequency

in the h'()-planc.
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5. Compute data points H(fi, @) in the h'(f)-plane using

the Reverse Processing algorithm of Section IIT,

The electron density profile N(hi, o) for this computation
is obtained from the mathematical model of eqn. (4-1).
The computation of N(hi, a) is handled by SUBROUTINE CALC

and is described in paragraph 4.4.

6. Compute the elements e, of discrepancy vector E as

defined in eqn. (4-7).

7. Compute the elements of matrix A. This is the matrix
of partial derivatives of H(fi, a) with respect to a,

with each element a,, as defined in egn. (4-7). The

ik

term 9a, is approximated by perturbing the elements of

k

a by 0.1%, one at a time.

8. Compute the elements Aoy of the adjustment vector Aé,
‘which is the solution of matrix eqn. (4-12). This is
handled by SUBROUTINE MXV which is described in

paragraph 4.4.
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10.

11,

This step is a decision block to determine whether or
not the latest adjustment vector will make a significant
change in the coefficients of éﬁe mathematical model

of the N(h) profile. If the maximum absolute value of
all the change ratios of vector & are less than ¢,
written as

Ao .
< g€, k=1, 2, 0607 K

a. NO, branch to Step 10. Repeat steps 4 thru 9.

‘

b. YES, a weighted least squares solution for N(hi’ a)

has been obtained.

Add the adjustment vectdr Ag to the state variables o and

repeat steps 4 thru 9.

Cutput N(hj, a) at equally spaced increments of true

height hj.
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4.3 COMPUTATION OF hi

The matrix method of computing an N(h) Qfofile requires that
comparisons of h'(f) and H(fi, o) be made at the same frequency.
Since only portions of an O-Tracé are usually available, and we
would like to avoid the extra step of curve fitting a scaled
X-Trace, a method is desqgﬁbed in this section whereby values

of true height hi are cd&ﬁuted such that computed data points
H(fi, @) will occur at the same frequencies as the corresponding

scaled data points h'(fi).[zq

The frequency, fi’ of a computed data point H(fi, a) for the

X, 0, and Z-Traces is a function of plasma frequency f and

N’
for the X and Z-Traces is also dependent on the gyro frequency

[13] .

fH' as follows

£+ S+ ag?

X
2
fo = fN (4-20)
fz = fx - fH (4-21)
fy = YN/12400 (4-22)
£, = 2.8B (4-23)
where N = jonospheric electron density
(electrons/cm3)

B = induction (gauss) earth magnetic field

f = fregquency in MHz
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Since N and B are monotone decreasing in h, £ and fH are also

N
monotone decreasing, and therefore the computed frequency fi,

computed from egn. (4-19) through eqn. (ﬂ—Zl), is monotone decreasing

in h. This property makes it possible to use a technique of

successive approximation for finding hi such that

f . . 5
=l <€ < 001 (4-24)
i
For the general case
h, < h, = satellite height (4-25)

so that'the_first trial value of h; will be

h., = — (4-26)

if £ On the first iteration, in this

> fi’ then hi > hi

il 2 1°
example, hi is in the upper half of the interval hS to h = 0.

On successive iterations hi is bounded by 1/4, 1/8, etc., of the
total height interval until the conditions of egn. (4~-22) are met.
At each trial value of hi’ fN is computed from eqn. (4-2) and egn.
(4-22).

2 I

N(n-h,) = 0 = (4-2)

X
T Iekly
k=1
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where the variables are the same as previously defined. The
value of fH at hi is obtained by inverse cube interpolation
(refer to Section II) at the satellite position, which'is known

from t(fi) and the topside sounder orbital parameters.

The following is a brief description of the various processing
steps in sequence as they relate to ¢omputing hi prior to obtaining
H(fi, a) by Reverse Processing. The following step numbers relate

to the processing blocks in the flow diagram of Fig. 4-4.

1. Input fi’ t(fl), hs’ and trace designator (X, O, or

Z-Trace)
2. Compute trial value of hi

3. Compute f_., f ‘f‘i, Ah. The value of f;(h) is obtained

HI

by inverse cube interpolation vertically with respect to

1

true height and linear interpolation horizontally with

respect to time.

NO, go to step 5.

YES, hi = h., RETURN to calling program.
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i
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COMPUTE A
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Ah = Ah/2 3

- <<:\(fi~fi)< O/:DJES~
\“\\\ 5////

S

Fig. 4-4
Flow Diagram =
To Compute

h, for Matrix Processing



If (fi - fi) <0
NO, go to step 6.
YES, go to step 7. i

Compute next trial value, h = h - Ah

Compute next tr;alkvalue, h = h + Ah
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4.4 PROGRAM NHMODEL

The Matrix method of reducing topside sognaer ionograms to
electron density profiles requires an in;tial estimate of N(h)
as represented by a mathematical model. In other words, an
initial set of values for o are required. This is Step 3 in

the flow diagram of Fig. 4-3.

While the program for the Matrix method is under development,
it would be well to start with an initial function N(h, g) that
is reasonably close to an actual N(h) profile computed by
cither Forward or Inverse Processing. Program NHMODEL was
developed in order to curve fit a variety of different N (h)
profiles during the investigation of ways to adequately model
an N(h) profile. Some of the subroutines such as CALC and MXV
can be used directly in the overall Matrix program. Other
subroutines such as COST and STEP would be modified for use

in the flow diagram of Fig. 4-3.

Program NHMODEL was developed using a time share computer
terminal. The program is written mostly in FORTRAN IV with
some voriations that were permitted and others required by
Tymshare FORTRAN IV. Differences in the variable names in the
program and the nomenclature in paragraph 4.1 arise due to the
fact that Program NHMODEL is a revision of a standard Astrodata
program and it was convenient to minimize changes in the

variable name structure.
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A complete listing of Program NHMODEL is included starting on
page IV-34. The numbers in the left hand column of each page
are line numbers that are used in the time share mode of
operation. They are convenient for reference but are not part

of the actual program.

A flow diagram of program NHMODEL is included starting on
page IV-33a. The results obtained from curve fitting the N(h)
profiles from four different ionograms are shown in Tables 4-1

through 4-5,

Input data is set up in the DATA statements, lines 138 through 144.

NCP = number of complex poles
NRP = number of real poles
NRZ = number of zeros at the origin

The last two elements of array ZK are the scale factor p, and the
change of variable constant n. Scale factor p is modified on
each iteration at lines 580 and 824, but n remains constant
throughout the program. In line 162, K is defined as the number

of degrees of freedom in the N(h;, &) model.
Array N is a two-dimensional array which contains the input

prescription vector, which is the N(hi) profile to be curve fit.

The (HN(I,l), I = 1,KL) are values of true height in units of
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MNEMONICS

NCP = Number of Complex Poles
NRP = Number of Real Poles
NRZ = Number of Zeros at Origin
ETA = Constant for Change of Variable S = n-h
ITCNT = Iteration Count
CK = ¢ in egn. (4-33)
EMAX = Cost Functional, |E(I)|max
0S = Step Size in egn. (4-42)
J = Index for ZK Array
PZK(J) = Initial Pole Positions of Analytic Model
ZK(J) = Final Pole Positions of Analytic Model
I = Index of Input Prescription Vector HN
HN(I,1) = True Height in 10 km

4

HN(I,2) = N (Electron Density x 10 )

AMP (I) = Value of N from Analytic Model

E(I) = Curve Fit Error, &n[HN(I,2)/AMP (1) ]

Table 4-1. Mnemonics for Tables 4-2 through 4-5
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/GATAS/ 1-13=-70 RUN 2 1400 /HN4/
.
240 >TRUN
MCP = 6 NRP = 0 NRZ = 3 ETA = 5
TTCNT C¥ EMAX Qs
! 1 24405434 1 ,
2 ] £.%1630]1 E~-02 1 0669977
3 3 4, 6292 4E6E-02 63314002
4 cE=02 2.27320]1 3E-02 1.3%3%071 .
& 2,7E=-02 2 ¢3954022E~0D2 «68598374
S 1E=02 2.1397652E-02 380101 41
7 1 E-02 ] ,R020024E-02 021983965
i 1E-D2 1 . 0P35954E~02 11457804
¢ | E=-02 1 .2208Q8PE-02 7.2008353E~-02
10 | E-D2 ] 4©798544E-02 4,5704°04E-02
1 1E-D2 | ,Q720q02E~-02 2,3237761E-02
J P7K (J) 7 (J)
1 06000 .0524¢%
2 7.00000 €.583%3
3 0000 0641 R
A £.,11000 5.50347
5 .N5900 o N5270
€ 4,62000 4 ,6572¢
7 . 30000 LA2664
v 4,700 2L ACET
© .50000 i .32791
13 32,22009 2 999360
11 1.02900 628692
12 1.75000 1 .76945
13 1.00000 124084 ,43000
14 5,0N000 5,.00000
I HNCI, 1) HN(I,2) AMPCID) ECT)
| 2,000€68 41211 . 40885 00771
2 2.040912 . 43946 «43731 0049}
3 ! Q3930 290675 »50802 -.,002%1]
4 1.73615 873924 87809 -,00628
5 1.53350 23711 23364 .N0371
& | 435295 1.2%677 1.,29261 -,00453
7 1.16740 1.2010% 1 .91385 - .00669
o 1 042 4% 2.64045 2,61095 L1 4€4
o L TANET 4,7194] 4,80601] LO068%
n L6550 Q,a674% 1N,.14657 -.01781
[ LHB%203  {7.00012 1R, 10745 -,.N1040
1S JArera 2@ 1064y 29 20757 - 00642
13 LAA505 41 ,50N4T7 40,2579 N1394
) 4 LAl48)  56.1R123 55 ,56R75 01096
15 W 39570 T4,62321 T6,17590 . -,01279
16 L36753 02 ,61606 91,54081 @ 01168
sTOP
(B3P0 ) s
Table 4-3. /HN4/ 68-122-165346 Ionogram Recorded at Ottawa
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/DATAS/ [=13=70 RUN 5 1550 /HNE/
N
>LIST 13R:139 '
139 DATA NCP, NRP, NRZ /€6, 0, 3/
13e DATA (ZK(K), K = 1,14) /.06,6,6,.07,5.5,
0056,4,75045,4.75,1 03,3:2,085410T510554/
sRUN
NCP = 8 NRP = 8] NRZ = 3 ETa = 5
ITCNT CK EMax @S
1 1 s 19462359 | )
2 i 2 .6202655E-02 1.0896104
3 03 2.,0441304E-02 +HO9TARL 6
A QE=NE 2.0446496E=02 «3,0656876E=-03
J PZX (J) ZX (J)
1 06000 05924
2 £,60000 6 ,86250%
3 07000 206633
4 5,50000 5,50698
5 05600 ,05%892
& 4,70000 4 ,6RTOR
7 « 45000 e 34404
a2 4,75000 4,82979
o 1 » 30000 1 .42056
1N 3.20000 3.2712%9
! 075000 LB H50
12 1 .70000 | 84677
13 1 .00N000 160412,94%00
14 5,00000 5.00000
I HNCIL 1) HNC(T, 2D AMP(I) ECD
! 216094 « 33260 233223 00112
2 2 08682 e 3499 98419 00208
3 1 . B651¢ s 52641 092962 =,00608
4 1.61567 + 30806 «80973 - ,00083
5 [ 38034 1 .25600 1 s24366 s00987
& 119733 ] 82950 1 .8295% « 00000
7 1 ,06615 2.63100 2 .62495 .00230
& «T2R37 3.93651 3.93452 ,00051
« 8 12202 6L.22601 E.,34%15 -,0099¢9
10 LBET04  10,62651 10,52¢80 00355
11 L6003 1R, 02124 | 2,62187 201386
12 LACLTH PR QPSP 20 12637 -, 00564
13 LANLIDS 4D JANATE 43 .28067 « 02045
14 LA000T BT, 08030 5815866 -.01504
] & L 32BNe 75 ,7556% T4 ,22366 202043
16 L3817 Q€ ,45132 ©5,30206 01199
17 WI3CI2 119,03530 (20 ,9%7T486 - ,01618
1 e LIPPER 131 ,76640 131 ,9R95( - ,00169Q
je o300 139,13170 137,71923 01020 -
3Tne
(2F21 ) > ~

Table 4-5. /HN6/ 68-122-165450 Ionogram Recorded at Ottawa
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3

10~ km. The HN(I,2) are the related values of electron

density divided by 104, KL, is the number of elements in the

prescription vector.

The program is initialized in lines 148 through 172. At lines 174
and 176, the ZK array is stored in PZK for comparison on final

printout.

At lines 178 and 180, the change of variable computation takes

place.

s; = n - Iy trom eqn. (4-2)

i=l, 2, ....,I

Subroutine CALC, which is first called at line 188, computes
N(s;), eqn. (4-2), as AMP(I), using the values of g in array ZK.
In line 580, the scale factor p is computed initially so that

in line 584
AMP (10) = HN(10,2) (4-27)
This forces the two curves N(h) and N(hi, a) to cross at the

tenth lamination boundary.

In Subroutine COST, which is first called at line 196, the
discrepancy vector E(I) is computed in line 816. This is similar

to vector E in eqn. (4-10). 1In the same DO loop the sum set of
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E(I) is accumulated so that the mean value can be computed in

line 820. The mean value of E(I) is removed in line 830 which

is equivalent to changing the scale factor P by a term called

EXM in line 822. The scale factor correction takes place in

line 824. On the last iteration, the scale factor correction

is applied to AMP(I) in line 314 for printout. 1In the DO loop

lines 828 through 836, the maximum absolute value of E(I) is defined

as EMAX.

In Program NHMODEL, EMAX is used as the cost functional and the
program is structured to minimize TMAX, although it minimizes all
other values of E(I) as well. Beginning at line 838, if EMAX > .5
a different scale factof is computed as ER. This is usecd to

scale down the discrepancy vector E(I) in line 844 so that the
maximum value of E in the matrix equation does not exceed 0.5.
This prevents a divergent condition from developing if the

initial values of ZK are not very good.

Statement 100 at line 198 is the reentry point for the major’
iterative loop and is called at line 298. There are three exit

conditions from this major loop at lines 202, 208, and 209.
!
The elements of the matrix of partial derivatives D(I,L) are

computed in Subroutine GEND, which is called at line 216.

These are similar to the elements ai of eqn. (4-9), but the
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D(I,L) can be computed directly because N(h, &) is an analytic
function of o and is the model of the curve to be fitted. The
elements are computed as the partial derivative of the natural

logarithm of the function N(s, a) with respect to o as given by

3 fn N(si)
D(I,L) 5 (4-28)
o
k
where the notation D(I,L) is similar to aiq in egn. (4-9).
So far in the program we have developed a matrix equation
"B = p(DpR) (4-29)

where DK is the program name for the adjustment vector Ag. The

similarity with eqn. (4-10) is obvious. Both sides of eqn.

T

(4-29) are multiplied by D° in lines 224 through 240. 1In the program

B =DE (4-30)

and A =D" (4-31)

]

Since A is a symmetric matrix, only the terms on and above the
main diagonal are computed directly. Terms below the main

diagonal are filled in at line 254.
Under some conditions matrix A can be poorly conditioned so that it

cannot be properly inverted. This condition is prevented by adding

a constant CK to ecach term of the main diagonal at line 250. This
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alters the matrix equation which is then compensated by adding
the proper correction term to the other side of the equation.

Assume a matrix equation of the form

AX =8B (4-32)
It follows that
[é + e£]§ = E + €X (4-33)
where I = identity matrix
In the program
DK = X
CK = ¢
Bl = B + eX line 266

Since DK is the unknown in the matrix equation, the first trial
value of DK for eqn. (4-33) is the previous value from the prior
iteration. DK is then computed in Subroutine MXV which gives a
better value of DK for eqn. (4-33). This is repeated four times
in lines 262 through 274, cach time improving the value of DK.
Under certain conditions CK is revised downward, lines 276 through

280, so that
.01 < CK < 1. (4-34)
This reduces the product term €X in eqn. (4-33) so that it becomes

less and less significant in the value of Bl.
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Subroutine MXV[ZQ computes X in eqn. (4-32) without evaluating

éul. For a 10 x 10 matrix this requires only about one half the
computer CPU cycles compared with evaluating X using the

equation

¥=A"B (4-35)

MXV is modified from a generalized matrix inversion subroutine

[29

from McCracken.

The magnitude of adjustment vector DK can be optimized to give
maximum reduction in the cost functional EMAX. This is accomplished
in Subroutine STEP using a Goldeh Section Search [%]. In the
program, the step size QS becomes a scalar multiplier on DK in

lines 928, 952, 966, and 994.

The boundaries of the search interval are S1 and S2, with initial
values of 0 and 1 respectively in lines 918 and 920. In the

first part of STEP, thru line 944, 52 is increased by increments
of 0.5, line 936, until a line thru two consecutive values of

EMAX has a positive slope, line 934, This establishes the minimum
value of EMAX as lying somewhere between S1 and S2, as shown in

Fig. 4-5.

The Golden Section search is based on setting up intervals with

ratios such that
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X+ x-1=0 {4~35)
x =51 _ (ig
5
x? = .382

The search for minimum EMAX starts at line 948 with M = 0.

Compute the following:

El = EMAX (4-36)
lines 948-958 QS, = .382(s2 - sl)

E2 = EMAX
lines 962-972 QS, = .618(s2 - s1) (4-37)

Then compare to see which of El and E2 is larger, line 978.

If E2 < El (4~-38)

then QS1 < Q8 < 82 (4-39)

We reduce the search interval by making

S1 = QS] line 982 (4-40)
On the next iteration with M= 1, El = E2 and a new E2 is computed.

E2 = EMAX (4-41)
lines 962-972 QS = S1 + .618(S2 - S1)
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By using the ratios in the Golden Section search, it is only
necessary to compute one new value of EMAX per iteration. After
ten iterations, the step size QS for minimum EMAX has been
determined. The loop exits at line 976 with M > 9. The scalar
multiplication

DK(I) DK(I)*QS

i

I = l, 2, e e 808 § K (4—'42)

occurs at line 994, followed by a return to the main program.

All the state variables should remain positive. If any elements
become negative, they are forced positive at line 294. This
completes the major iterative loop of Program NHMODEL. A detailed
flow diagram for the Program NHMODEL is shown on Figures 4-6

through 4-11, and a program list is provided in Table 4-6.

IV-33



NHMODEL

oo Entry
- 1. Read input data NCP, NRP, NRZ,
[:1/ estimate of ZK vector, and density profile

2. 8et CK =1, Q8 = 1, DK vector = 0,
2 and iteration count = 0

3. Calculate K, K1, ard K2

I 4 j 4., Store the initial estimate of the ZK vector
. in PZK
{M{”! 5. Compute the change of variable
g S(I) = ZK(K2) - HN(I,1l)
{”Gjy 6. Compute the approximation to N(H)
g . CALL CALC [AMP,HN,S,ZK]
Return with AMP
j‘;“‘ 7. Compute the discrepancy vector, E
iL.WU CALL COST [AMP,E,HN,ZK,EMAX,EXM]
[ Return with E, EMAX, EXM
(ci— »O
S
é 8 J 8. 1Increase iteration count by 1

e 9., Is EMAX < 0.017
NO
[’"IBW/ 10. Display iteration count, CK, EMAX, and QS

/\ YES
€ Aj 11. Is QS < 0.01?

12. Is CK = .01 and EMAX < .025 and QS < .03?

Fig. 4«6. Flow Diagram for Program NHMODEL



NHMODEL

Lu } 14,

17.
]

YES |
N 18.
NO
B 19.
r“;;“"g 20 .
e
21.
21 |
1 1
o2 | 53
i § .
T2 ] 22.

Fig. 4-6. Flow

Compute partial derivative matrix, D
CALL GENDI[D,S,2K]
Return with D

Compute B

w
I
(»]
a5

Compute A =

{o
1o

Add CK to the main diagonal
of the A matrix

Compute approximate_solution to
DK = (DT*D + CK#I) 1 (DT+E)

oATL MXV [A,DK,B1,T,K,K1l]
Return with DK

Is EMAX > 0.1?

Replace CK with 0.3 CK

If CK < 0.01, set CK = 0.01

Compute the multiplier, QS, to optimize
the correction for the ZK vector. The
new values for E and EMAX are computed.
CALL STEP [AMP,DK,E,HN,S,ZK,EMAX,EXM,Q8]
Return with DK, QS ‘

Replace ZK with ZK + QS*DK

If any component of ZK is negative, then
reverse the polarity of that component.

Diagram for Program NHMODEL (Cont)



NHMODEL
©

Zza] 24. Display HN(I,1),HN(I,2),AMP(I),E(I),
I =1 toKL

Cf_LsJ 25. Exit

Fig. 4~6. Flow Diagram for Program NHMODEL (Cont)



NHMODEL

) Start

{:};} 1. Compute the effect of the complex poles
i NCP
— ) * . -
DEN = T[] (IPIIlPI ) (See Fig. 4-1)
J=1 J

2. Compute the effect of the real poles

(NCP+NRP)
Replace DEN with DEN * T[] Pl
J=NCP+1
3] 3. Compute the effects of the zeros
AMP (L) = [S(1)1VR%/DEN
4 1 4. Compute scale factor ZK{Kl) = HN(10,2)/AMP(10)
o YES .
TN 5. Is L = KL?
NO
6 6. Replace AMP(L) with AMP(L)*ZK(Kl), L = 1 to KL
) 7. Return

B. Increase L by 1

Fig. 4~7. NHMODEL Flow Diagram - Subroutine

CALC [AMC,HN, S, ZK]



NHMODEL

40

Start

N
il

1. Compute ZKP(I) = [ZK(I)1%, I = 1 to K

2 2. DO 100 I = 1,K
_______ ?Nw 3. Set L = 1
o 4, Compute S1 = [S(I)]2
5 5. Compute S2 = S(I) + S(I)

s 6. DO 40 J = 1,NCP
7 7. Compute D1 = [ZKP(L) + ZKP(L+l) - S1]2
g
8 8. Compute D2 = [ZK(L) =* 52]2
9 J 9. Compute RC = -Dl - D2
1o 10. Compute D(I,L) = 2 % ZK(L) * [ZKP(L)
+ ZKP(L+l) + S1]/RC
n 11. Compute D(I,L+1) = 2 % ZK(L+1) % [ZKP (L)
: + ZKP(L+1) ~ S1]/RC
12 12. Increment L, L =1L + 2

13. Is J = NCP in DO loop?

Fig. 4-8. NHMODEL Flow Diagram = Subroutine
GEND [D,; 8, ZK]



NHMODEL

60 kum4<§f>

NO ITES

100 <20 Dy

~,

“'YES
NO]\

Fig. 4-8.

14.

15.

16.

17.

18.

19.

20.

21.

Is NRP = 0

DO 60 J = 1,NRP

Compute RR = -S1 - ZKP (L)

Compute D(I,L) = ZK(L)/RR

Increment ., L = L + 1

]

Is J NRP in DO loop

Is KL

b=~
i

Return with

—

IAnAMP (1) ILNAMP (1) e
9ZK (1) 92K (2)

dANAMP (2) d&nAMP(2) cens
dZK (1) 3ZK (2)

I4nAMP (KL) 94nAMP (KL) ....
9ZK (1) dZK (2)

NHMODEL Flow Diagram - Subroutine GEND [D,S, ZK]

9 4nAMP (1)

24nAMP (2)

9 AnAMP (KL)




NHMODEL

Start

Load A matrix into array T

T(I,J) = A(I,J)
I = l, 2' & @ @ @ 7 N
J = lp 2' ® e e 0@ N

Load vector B into last column of T

T(I,N1) = B(I), I =1, 2, ceeu, NA

DO 100 for K = 1 to N

In the kth column, starting with the K+1
row, determine which row of the T matrix
has the term with the greatest, magnitude.

This is indicated as the Lth row.

Is K = N?

Is L

[

X?

Interchange the Lth and Kth rows in the

T matrix for all columns from the Kth' :
through the (N+1)th, J = K to N+1

Fig. 4-9. NHMODEL Flow Diagram - Subroutine MXVI[A,X,B,T,N,N1]



NHMODEL

7 7. Replace the T(K,J) term with T(K,J)/T(K,K)
J = K+1 to N+1

YES
,»—<s> 8. Is K = 1?
th

. 9. For the I row, from I = 1 to K-1, for
J = K+1 to N+1l, replace T(I,J) with
T(I,J) - T(I,R)*T(K,J)

O

NO

11. For the Ith row, from I = K+1 to N,

for J = K+1 to N+1l, replace T(I,J) with

T(I,J) - T(I,K)*T(K,J)
100 (e’
{‘2 12. X(I) = T(I,N1), for I = 1 to N
CE;} 13. Return

Fig. 4-9. NHMODEL Flow Diagram - Subroutine MXV [A,X,B,T,N,N1] (Cont)
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e oy
b i

i i

L
W0

L

Replace all E(I) with E(I)*0.5/EMAX

q; Start
1 1. Compute E(I) = &n[HN(I,2)/AMP(I)], I = 1 to KL
KL
2 2. Compute EMEAN = ﬁ% 2, E(I)
I=1
3 3. Compute EXM = ¢ (EMEAN)
é 4 4. Replace 2ZK(XK1l) with ZK(K1)*EXM
5 5. Replace all E(I) with E(I) - EMEAN
6 6. Set EMAX = Max absolute value of E(I)
;§§<;i}‘» 7. Is EMAX < 0.57?
’§ | no
§
% fTT? 8. Set ER = 0.5/EMAX
I
i

oy
=—0

—
i

io.
g

10. Return

Fig. 4-10. NHMODEL Flow Diagram - Subroutine COST

[AMP,E, N, ZK, EMAX, EXM]



NHMODEL

Sf Start

i 1 lo Set EleB‘-{AX’ MzOy Sl=0y 82.‘:1
| 2 2. Set QZK(I) = ZK(I), I = 1 to K
Lo
()
o (i
fm3"} 3. Replace ZK(I) with QZK(I) + DK(I)*S2, I = 1 to K

J 4 4. Call Subroutine CALC [AMP,HN,S,ZK]

~[ Return with AMP

5 5. Call Subroutine COST [AMP,E,HN,ZK,EMAX,EXM]

Return with E, EMAX, EXM

N

<\5>~XES 6. Is EMAX > E1?
NO

L 7 7. Increase S2 by 0.5

YES,J;$ :
— 8 8. Is 82 > 2.57?

[‘9 ] 9. Set El = EMAX
-
10. Is S2 = 17
1 11, Set S1 = -1
(Y
&)
[ 12 } 12. Compute QS = S1 + (S2-51)*0.382
L ,‘[ .
(] 13. Compute ZK(T) = QZK(I) + DK(I)*QS, I = 1 to 20
2) Fig, 4-11. NHMODEL Flow Diagram =«

Subroutine STEP [AMP,DK,E,HN,S,ZK,EMAX, EXM,QS]



NHMODEL

l ™ 14. Call Subroutine CALC [AMP,HN,S,2K]
ma— Return with AMP

115 15. Call Subroutine COST [AMP,E,HN, ZK,EMAX, EXM]
ks Return with E, EMAX, EXM
‘5] 16. Set El1 = EMAX

17. Is M > 072

18 18. Compute QS = 51 + (S2-S1)*0.6]8
1 19. Compute ZK(I) = QZK(I) + DKR(I)*QS, I =1 to K
20 20. Call Subroutine CALC {AMP,HN,S,ZK]
Return with AMP
IR ﬂi[ 21. Call Subroutine COST [AMP,E,HN,ZK,EMAX,EXM]
- Return with E, EMAX, EXM
22 22. Set E2 = EMAX
a
fka 23. Increase M by 1
<&§/ YES(Z)24. Is M > 97
NO
2 YB5(F) 25. 1s E2 > E1?
NO
3 ”’J 26. Set El = E2
; z%j 27. Replace S1 with S1 + (S2-S1)*0.382
\Mw4J Fig. 4~11. NHMODEL Flow Diagram -

Subroutine STEP [AMP,DK,E,HN,S,2K,EMAX,EXM,QS] (Cont)
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s

b
!

i

o
{ ze 28. Set E2 = El
29 29. Replace 52 with S1 + (S2-S1)%0.618
1
E)
m;"«] 30. Replace DK(I) with bK(I)*QS, I =1toK
Gy 31. Return

Fig. 4-11. NHMODEL Flow Diagram -

Subroutine STEP [AMP,DK,E,HN,S, 2K,EMAS,EXM,QS8) (Cont)



PROGRAM LIST

T .
LIST teloe

100,
102,
104,
108,
107,
1o,

LR I

W) LD
ANALD D AT D gme ™
e & & © & B8 & © % 6 ® g § ¢ &

OB Datee N G e WD
(@]

142,

194,
fed,

177,

Ce

Ce
Ce
Ce
Ce
Ce
C:
Cs
C»
Ce
Ce
Ce

Ce

Ce

79

an

on
Ce
O

Cl
Ce
Ce

100

NHMODEL 1=-13-70 PAGE |

PROGRAM NHMODEL

PROGRAM TO INITIALIZE THE ALPHA VECTOR
INPUT IS A SET OF N(H(I>) DATA POINTS IN ARRAY HN

ETA = ZK(K+2)
HN = PRESCRIPTION VECTOR (M,N)

K = NUMBER OF TERMS IN APPROXIMATION VECTOR 7K
KL = NUMBER OF TERMS IN PRESCRIPTION VECTOR HN
RHO = 7K(K+1)

S = ETA - HN(I,I)

7K = ALPHA VECTOR

DIMENSION TITLE (7), ZK(14), HN(20,2), S(20), DK(12)
DIMENSION E(20), B(12), A(12,12), D(20,12), T(12,13)
DIMENSION PZK(14), AMP(20), W(20), Bl1(12)

COMMON NCP, MRP, NRZ, XK, XK1, KL

DATA NCP, NRP, NRZ /6, 0, 3/

DATA (ZK(K), X = 1,14) /.06,7,,.0%9,6,11,.05,4.68,,.,3,4,78,.

50,3.29,1602,1:.75,1 6454/

DATA XL, (HMe/T, i, HECIL2Y, I=1,8) /16, 2,09966,.41211, 2,

04212, ,43%°46, 1,9383%,,50675, 1.73615,.67384, 1,53350,,937

11, 1.35285,1 .28677, | .16740,1,.%010€, 1.,04249,2,64%945,/

DATA (HN(CI,1), HN(CI,2), I=9,KL) /.%4938,4,71%4]1, ,65850,9,

©6743%,,55223,17,9%2012, .48%18,28.10641, ,44505,41,50047, ,

41 461 ,56,18123, ,38580,74.68321, .36753,92,.61€06/

ITCNT = ©

CK = 1.,
1.

I = 1,20

ECI) = .01}

IF (T JLE, 12) DK(I) = 0O,

CONTINUE

¥ = NCP+NCP+NRP

Kl = K+l

K2 = K42

DISPLAY "NCP =", NCP, "MNRP =", NRP, "NRZ =", NRZ, "ETA =",

7U(K2)

DIsSPLay ™ °

DISPLAY "ITCNT CX EMAX Qs”

DO /0 1 = [,K2

P7KC(IY = ZK(D

peoen 1 = 1KLL

SCIY = 7K(X2) = HN(I,D)

COMPUTE APPROXIMATION TO N(H)
CALL CALC [AMP,HN,S,7K)
COMPUTE DISCREPANCY VECTOR E

CALL COST [AMP,E,HN,ZK ,EMAX,EXM)]
CONTINUE
Table 4-6. Program List for Program NHMODEL

IV-34



PORTAM LIST

1-
187

200,

2Ne
- B

’:}:‘\a.
fNB.
m'),q.
SN
"lﬂ °
i
Tla,
i O
M.
nﬂﬁn °
1‘;’)?.
"‘»’34.
'}‘){f.
~ee
230

k]

734,
~T o

o i\ @
sre,
DAY,
{.’{é?-
a4k,
C46,
f"d(:;.
nERN,
A ED

PHhit e
n

~ha,
5@,
o760 .
"R,
T4,
2FE.
cka,
AR
272
A?A'

~TE,

::)-aq‘

~ ey
e

f)ﬁ/’ .

A~y .

200313

130

Cs
Ce

140
Ce
Ce
150
Cn

Ce
1 €0

Ce
Ce

-
170
1en

2nn

, KL .
Table 4-6. Prqgramfiist for Program NHMODEL (Cont) ‘;V~35

NHMODEL 1-14~70 PAGE 2

ITCNT = ITCNT + 1 :
IF (EMAX ,LT. .01 ) GO TO 200

DISPLAY “7K =", ZK

DISPLAY ITCNT, CK, EMAX, QS

IF (RS LT. .01) GO TO 200

IF (CX (EG, .01 JAND, EMAX .LT. .025 .AND, @S ,LT. .03) GO
TN 200

GENERATE PARTTAL DERIVATIVE MATRIX D

CALL GEND [D,S,ZK]

MULTIPLY BOTH SIDES BY D TRANSPOSE
DC 120 T = 1,K
PCIY = 9,
De 120 L o= 1 ,KL
RCIY = BCI) + DCL,I)*EC(L)
DO 130 T = |,K
DA 130 J = IL,K
aCT,0) = 0,
ne 130 L= 1 ,KL
SCT o) = L Caods b DL, TYE0 (L, D
ATD CK TO MAIN DIAGONAL AND COMPLETE THE A MATRIX
DO 140 T = I,K
ACT,T) = ACI,I) + CK
Do 140 O = lgx
A, 1) = A(TI D
COMPUTE ADJUSTMENT VECTOR DX 0ON ALPHA VECTOR ZX
DO 160 J = 1,4
DO 150 1 = 1,K
R1(I) = B(I) + DK(I)*CK

CALL MXV (A,DK,B31,T,¥,KI]
DISPLAY " ™

DISPLAY "DK =", DK

CONTINUE

TF (EMAX ,GT. .1) G50 TO 170
C¥ = CK%0,3

IF (CK L,LT. .01) CX = .01

COMPUTE STEP SI7ZE FCR ADJUSTMENT VECTOR DK AND ADD D
K TO ALPHA VECTOR ZK

CALL STEP [AMP,DK,E,HN,S,ZK,EMAX,EXM,QS]
DRo1eN T o= 1K

TF (7KC(T) L1.T, 0,) 7K(I) = =ZX(I)

CONTINUE

50 TO 100

CONTINYE

DISPLAY ™ "

DISPLAY * J PZX ZK"
WRITE (1,921) (J, PZKC(D, ZKCD), = 1,K2)
DISPLAY ™ "

DISPLAY *© I HNCI,I)  HNCI,2) AMPCI) ECI)"
DC 220 1 = |
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PROGRAM LIST NHMCDEL 1=-13-70 PAGE 4
1
LIST 500:5¢e0

5070, SUBRCUTINE CALC [AMP,HN,S,ZK]

502, Ce

574, Ce CALCULATE N(S) OF THE APPROXIMATING FUNCTION ZK
50€ , Ce

3N<, DIMENSION AMP(20), HN(20,2), S(20), ZK(14)
517, COMMON NCP, NRP, NRZ, K, X1, KL

517, Ce

5] 4. C+ DISPLAY © ", - QAI”, " DENT
515, DO 50 L = | ,KL

517, I =1

570, nEN = 1,0

527, C-

Siﬂ. Ce CCMPUTE AMPLITUDE RESPONSE DUE TO COMPLEX POLES
AR Ce

g2y ne 20 J = 1 ,NCP

550, Al = 7K

EXT, A = TKI+1)

534, R = (B1=-5CLY)Y*(BI=-S(LY

536, RZ2 = (BI+SLY)*(BI+S(L))

537, Py oz Alwpd

540, Rl = SGRTI(RI+R3IX(R2+R3I) ]

547, DEN = DEN % Q1

544, Cs DISPLAY I, Q1, DEN

546, 20 7T = 1 + 2

5‘450 Ce

550 4 Ce COMPUTE AMPLITUDE RESPONSE DUE TO REAL POLES
550 C:

554 4 IF (NRP EQ. 0) GO TO 40

55€, DO 30 J = 1,NRP

559, Al = 7K(D)

567, Rl = S(LY%S(L)

562, RO = Al%A]

564, 0l = SORTIRI+R2)]

566, DEN = DEN *x R}

£, Ce« DISPLAY T, Ql, DEN

570, I T = v 4 |

570 40 CONTINUE

T4, AYMP (1Y = SCLY*XNR7/DEN

578, C: DISPLAY T, Q1, DEN, AMP(L), L

577, 50 CONTINUE

5¢Nn, TKCKL) = HNCIN,2) /AMP(10)

590, DO 60 L = | ,KL

e, N AMP(L) = AMP(L)Y*ZK(XD)

57¢, NETURY

577, END

Table 4~6. Program List for Program NIMODEL (Cont)
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T

PENGRAM LIST

LIST €n0n:€ee

&N0 .,
€02,
FT\'A.
€&ne,
rne .,
1,
f1e,
£1d,
£Y £
o
cle,
con
s
AR
RS
£
£33N
€32,
£34,
£3€,
£39,
£40,
642,
£hd,
CAE,
a4,
€50,
652
£54,
£5€,
§5¢%,
£E0,
€6,
ChA,
cE€E,

Ce
Ce
Ce

Cs
C:
C-

80
100

NHMODEL 1-13-70 PAGE 5

SUBROUTINE GEND [D,S,ZK]
GENERATES D MATRIX OF PARTIAL DERIVATIVES

DIMENSION S(20), ZK(14), ZKP(12), D(20,12)
coMmMON NCP, NRP, NRZ, K, KI, KL

DO 10 I = 1,K
THPCI) = ZEK(IY%TK(I)
DO 100 I = 1,KL

L o=

Sl

52

S(I)*S (D
S(IY + S

1 it

TERMS FOR COMPLEX POLES

Do
Dt
D2
RC
DL, L)
DCI, L+1)
L=zL +2

o
s J

J = 1,NCP
(ZKP (L) +7KP(L+1) =S1) %2
(7K (L) *52) %2 ;

n:
A

LRI ¥ I N

“D e P2
(2 o#ZK(L) % (ZKP(L)+ZXP(L+1)+51))/RC
(2 ,%ZK (L+1 )% (ZKP (L)+ZKP(L+1)=S1)) /RC

bt

TERMS FOR REAL POLES

IF (NRP EO, 0) GO TO 100
DO 60 J = |,NRP

RR = =S1-ZKP(L)

DCI,L) = ZKCL)Y/RR

L = L + 1

CONTINUE

RETURN

END

Table 4-6. Program List for Program NHMODEL (Cont)
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prniRAM LIST NHMODEL 2-5-70 PAGE €
1'
sLIGT 700709

700 SUBROUTINE MXV (A, X, B, T, N, NI}

mny Ce SIMPLIFIED MATRIX INVERSE SOLUTION PROGRAM

EAY Cs GIVEN A % X = B FIND X = A%x%~] % B

me Ce LOAD A(N,N) IN FIRST N COLUMNS OF T(N,NI)

ne C: B IN LAST COLUMN

710 C: AFTER GAUSS-JORDAN PROCESS X WILL APPEAR IN LAST COL
) UMN QF Ta

2 C:

714 DIMENSION a(12,12), X(12), B(12), T(i2,13)

716 Ce

71e Do 10 1 = | ,N

720 PG 10 J = 1,¥

7P 10 T¢I, H = A(I, )

4 DO 20 1 = 1,N

e on TILND) = BCD)

e DO 100 K = 1,N

73N Ki = K 4+ 1

"0 IF (X ,EQ. N) GG TO 50

73 L = K

SR DO 30 1 = KI LN

T3e IF (ARS{TCL, 827 6T, ARS{T(L,O L =1

A0 30 CONTINUE

747 IF (L EQ, ¥X) GO TO 50

744 DO 40 J = K NI

THE Q = TWK,d)

TAE T(K, D = T(L,D

50 an T(L,J) = @

757 50 CCNTINUE

784 DO 60 J = X1 NI

756 &0 T(Kyd) = TK, I /TKLKD

75¢ IF (K .EQ, |) GO TO €0

750 KMl = K = |} '

TED non 70 1 = | KM

7604 DO 70 J = Kl ,NI

7€ 70 TCI,D) = T, = TI,,K) % T(KyJ)

TE” IF (K ,EQ, NY GC TO 100

70 on CONTTINUE

T pe @0 7 - KipN

T DO @0 J = X1 ,NI

T an TCI,.D = T(I,0D = TCI,K) * T(K,D

RAVAS 100 CONTTNUE

70 DO 110 I = (4N

Ten 110 X(I) = TCI ND)

7G4 PETURN

kel END

Table 4-6. Program List for Program NHMODEL (Cont)
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PROSRAM LIST NHMODEL 1=13-70 PAGE 7
T
LIST *00e90Q

en2, SUBROUTINE COST [AMP,E HN,ZK EMAX,EXM]
NEg, Ce '

7De, DIMENSION AMP(20), E(20), HN(20,2), ZK(14)
one, COMMON NCP, NRP, NRZ, ¥, Kl, KL
{0, Ce

~12, SuUM = 0,

4, po 10 1T = 1,KL

cr&,. ECI) = ALCGIHN(I,2)/AMP(I)]

ny e, 10 SUM = sum + E(I)

eon, EMEAN = SUM/KL

22, EXM = EXPIEMEAN]

T4, THCKE) = ZKC(K1)*EXM

~pE, EMAX = 0,

ol AL DN 2n T = 1 ,XL

onn, ECIY = E(I> - EMEAN

=30, Q1 = ARS{E(I))]

o34, IF (EmaAX LT, Q1) EMAX = Qi
a3e, 20 CONTINUE

RN IF (EMAX .LT. ,5) GO TO 40

240, ER oz 5/EYsX

o D30 1 = 1 ,KL

mA4, I E(IY = E(I)*ER

46 40 RETURN

4T, END

>

Table 4-6. Program List for Program NHMODEL (Cont)
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PROGRAM LIST NHMODEL 1=13=70 PAGE &
T
LIST enNneoee

eno, SUBROUTINE STEP [AMP,DX,E,HN,S,ZK,EMAX,EXM,QS]
tn4, Ce

chE, DIMENSION AMP(20), E(20), HN(20,2), S(20), ZK(14)
nne, DIMENSION DK(12), QZK(12)

a1, CNMMON NCP, NRP, NRZ, K, X1, KL

Qg'g, Ce

N /A El = EMAX

~1f, ™M = 0

2 LN St = 0,

~en, 82 =z 1.

~n2, DO 10 T = 1,K

a4 10 O7K(¢IY = ZKCID

N 24 DO 3071 = 1,K

~n0R 30 TK(IY = QZK(I) 4+ DK(I)*S2

~T0, CALL CALC [AMP,HN,S,ZK]

e 37 CALL COST [AMP,E HN,ZK,EMAX,EXM]
a4 IF ((EMAX-EI) GT. 0.) GO TO 40
036, G2 = G2 4+ 0.5

e, IF (82 ,GT. 2,5 GO TO 100

o4, El = EMAX

A7, G0 TO 20

ch4h, 40 IF (S2 LEQ, 1,) 81 = =1,

QL€ , Ce

c4R, 100 AS = 81 + (S2=S1)%x,382

e5n, DG 120 1 = |,K

efRl, 120 7K(IY) = QZK(I) + DK(I)*QS

cf4, CALLL CALC [AMP.,HN,S,ZK]

oS58, CALL COST [AMP,E,HN,ZK,EMAX,EXM)]
e5a, El = EMAX

R0, IF (M .GT. 0) GO TO 160

nED, 130 RS = §1 + (S2=Sl)*%k.6l¢

afd4, 140 DO 150 1 = 1,K

~EG . 150 7XK(I) = QZK(I) + D¥(I)Y*QS

€7, CALL CALC [AMP,HN,5,7ZK]

AL CALL COoST [AMP,E,HN,ZK,EMAX,EXM]
T, E” = EMAX

o744, {6n M - M+ |

~TE . IF (v ,GT, @) GO TO 200

~TT IF (E2-E1) 170,120,1¢0

te, [70 Et = E°

e, SI = S| % (S2-81)%,3¢2

4, 50 TO 130

~re, 190 ET = EI

T, S” = 51 + (S2-S1)Y%,.,61¢8

ARELAIN 70 T0 100

e, 200 D2 21D I = 1,K

AR 210 DY(TY = DKCI)*RS

el NTTHRN

Table 4-6. Program List for Program NIIMODEL (Cont)
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4.5 THE PSEUDOINVERSE

Kinkel[28] has developed an efficient algorithm for computing
the pseudoinverse of a matrix which can simplify the solution

of egn. (4-32).

The weighted least squares solution for X using the pseudoinverse

is represented as follows:

x = (awalt atwp (4-42)

Even if A is poorly conditioned so that it cannot be inverted,

the weighted least squares solution of X is given by egn. (4-42).

The use of the pseudoinverse will avoid the iterative method

associated with egn. (4-33).

IV=-42



SECTION V

HORIZONTAL PROCESSING

5.0 INTRODUCTION

Present methods for routine topside ionogram data reduction

depend on the following simplifying assumptions:

a. Vertical propagation of the echo pulse
b. Spherically stratified ionosphere over the period of the

X-Trace

It is a basic property of the topside sounding satellites using
swept frequency radar techniques that successive h' (f) echo
pulses correspond to ionospheric soundings at different earth-
based coordinates. It is well known that the ionosphere is
nonspherically stratified[lq and since the Alouette II satellite
moves at an average velocity of approximately 7 km/sec the
effects of horizontal gradients in the orbital plane should be

taken into consideration.

Present ionogram data reduction methods for h' (f) — N(h)
computation assume a constant electron density profile for the
ionosphere during the period of useful data acquisition in each
ionogram. In addition, the Forward, Inverse, and Matrix processing

methods are concerned with reducing the data from only one



ionogram at a time. In the Forward and Inverse methods, data

reduction begins at satellite height and works downward as
laminations are added to make up the N(h) profile. This has

become known as vertical processing.

The method of Horizontal Processing described in this section
is proposed as a ﬁethod of providing first order correction of
the effects of horizontal gradients. The method assumes

a constant horizontal gradient between adjacent ionograms

in the same pass at equal true height lamination boundaries.

In this section the horizontal gradient is defined as the rate
of change of electron density with respect to distance in the

orbital plane at constant true height.

This can be represented as follows:

(3
IX h

where N = density in electrons/cm3
x = distance in orbital plane
h = true height in lO3km



Since time is one of the parameters associated with an ionogram,
it is more convenient in data reduction to work with the gradient
as a function of time than with distance. The gradient with

respect to time is as follows:

() - (@)

I

) -2
h

At any true height level, the term (%%) is essentially constant
h

for the period of one ionogram. For Horizontal Processing the

gradient in eqn. (5-2) is assumed constant between adjacent

ionograms at each lamiratinn boundary.

Representative N(h,t) profiles for two ionograms are shown in

Fig. 5-1 referred to a time scale. The N(h) profile shown as

curve AB is the intersection of the ionospheric density surface
ABGH and constant time plane tll' The N(h,t) profile of Ionogram 1
is shown as curve AC which is the intersection of ABGH and a

skewed time surface. This is the type of electron density profile
that will be computed with the Horizontal Processing method.

Similarly the N(h,t) profile of Ionogram 2 is shown as curve EG.

With Horizontal Processing it is necessary to work with a minimum
of two adjacent ionograms from the same pass. The horizontal

grddicnt is then included in the N(h,t) computation by linear
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interpolation of N with respect to time along each lamination
boundary. This condition requires that the lamination boundaries

be at the same time height for each ionogram. Horizontal Processing
is most easily implemented by using Inverse Processing because the
heights of the lamination boundaries will be the same for all
ionograms in a pass, except at satellite height. We can also

assume that 9N/3t is a constant along the satellite track so that

N(hé,t) can be obtained by linear interpolation.

5.1 HORIZONTAL INVERSE PROCESSING

The method of Horizontal Processing will be developed as an
extension of Inverse Processing, which is described in Section III.
X~Trace data from two adjacent ionograms is scaled in conventional
manner, and then curve fit so that hé(f) is defined for any

frequency on both X-Traces.

The value of N(hl,t) at satellite height is computed for each

ionogram using the relation

.[-N - /f‘ (rl - _{‘”) (5-3)

1 fxs

[

where f

2

]

then N(hl,t) 12400 fN (5-4)



Referring to Fig. 5-1, the electron density at the satellite
for Ionogram 1 is denoted by N(hl,tll) and for Ionogram 2 by

N(h;,t,;). The value of N(hl,t)fat any time between t., and t

11 21
is then determined by linear interpolation. The gradient along

the satellite track is approximated by
N(h;,ty7) = N(hy,tq,)

- - (5-5)
a1 T %1

AN

S, = &%

1

>

Then at any time t along the satellite track from t to t

11 16

N(hl,t) = N(hl'tll) + Sl(t -t (5-6)

11)

It is convenient to denote satellite height by h., and yet,

1
because of the elliptical satellite orbit, hl will change from
one lonogram to the next. This doesn't change the validity of
eqn. (5~6), but the change in height should be taken into
account when computing the gyrofrequency fH for successive
laminations.

The bottom of lamination 1 is denoted by h, in Fig. 5-1. For

2
Ionogram 1 the first trial value of N(hz'tlz) is given by eqn.
(3-16) which is repeated for convenience.

h,=hy
)

e (3-16)




where N, = N(hl,t

1 11)

a., is derived empirically

2

From this a value hé(fZl) as in Fig. 3-2 is computed by Reverse

Processing. We now have a trial value for t12 in Fig. 5-1 given’

by
ty, = t(fZl) (5-7)
A value for N(hl,tlz) is now computed with egn. (5-6), using
t = t12' For the second iteration choose N(hz'tlz) using eqn.
(3-18)
sz = le(l + o) (3-18)
and compute a second point h%(fzz) as in Fig. 3-2. A straight
. . — T . -
line thru points hi(fZl) and hx(fzz) will intersect the X~Trace
at frequency f23° Next, update the estimate for tyo by
ty, = t(f23) (5-8)
The value of N(hl,tlz) is again updated using t = t12 in egn.
(5-6). For the third iteration,
fy2 = / f23(f53 = ) (3-19)

and a third point hé(f33) is computed. A segment of a circle

passing thru the three computed values of h;(fz) will intersect



"the X-Trace at frequency f24° Then as described on page III-9,
the final value of N(hz'tlz) can be computed from egn. (3-19),

{3-20) with fj = f24.

The corresponding point N(hz,tzz) is computed for Ionogram 2
in a similar manner except that N‘hl'tzz) is computed by
extrapolation. Assume the same slope as given by eqn. (5-5),
then

N(hl’t22) = N(hl’t2l) + Sl(t22 - t21) (5-9)

The horizontal gradient for all other laminations is approximated

by

N(h.,t,.) - N(h.,t
o Nhyitpg) - Nehg
] t25 7 13

.)
1] (5-10)

where J = 2, 3, ..., J lamination boundary number

In computing the values of N(hj,tlj) and N(hj'th) for succeeding
laminations, the significant difference in Horizontal Processing
is that the delay in previous laminations changes with the
interpolated values of N(hi’tli) and the extrapolated values of
N(h"tZi) where i =1, 2, ...., j. 1In Vertical Processing it is
assumed that the N(h) profile from previous laminations remains

constant. From the example shown in Fig. 5-1, it can be seen



that correction for the effects 6f horizontal gradients requires
the use of extrapolated data in Ionogram 2, while for Ionogram 1
the correction is obtained by interpolation. The use of
extrapolated data values can be minimized by processing the
ionograms in a pass starting with the last two ionograms and
working in reverse sequence. ,Aféér the last two ionograms have
been reduced this way, the one réferred to as Ionogram 1 becomes
the interpolation reference for ﬁhe next previous ionogram and no
further extrapolation is required for the remaining ionograms in

the pass.

The final output N(h,t) profile is then properly the intersection
of the ionospheric density surface ABGH of Fig. 5-1 and a constant
time plane. It then is a matter of choosing the time plane in
each ionogram at which to compute N(h,t). In Fig. 5-1, the curve
AB is the N(h,t) profile where ty, = t(fxs). One may wish to
select the time plane at t = tl6' This is convenient in that the

curve DC is already known at the time the value of Nj is computed

at the lower boundary of the last lamination.



5.2 HORIZONTAL MATRIX PROCESSING

Horizontal processing using the Matrix method of computing the
N(h,t) profile can be implemented by setting up the analytic
model of N(h,t) to converge to curve AC of Fig. 5-1. This will
then provide a direct mapping relationéhip as shown in Fig. 4-2,

since the variables in both planes are functions of time.

As a starting point, it may be desirable to compute curves AC

and EG of Fig. 5-1 using the method of Section 5.1. Then make
adjustments on AC using the matrix method of Section IV with

curve EG as an interpolation reference for accommodating the
horizontal gradient. When a matrix solution of curve AC is
obtained, it then becomes the interpolation reference for a matrix

solution of curve EG.

A different starting point would be to compute N(h) for ionograms
1 and 2 using the Inverse Mixed—-Mode Processing method of Section 3.3.
The computation for Horizontal Matrix Processing would then continue

as described above.

Interpolation of N(h,t) for horizontal gradient compensation
would proceed as in Section 5.1, where reference values for
interpolation along curve AC would be computed with respect to the
analytic model along lamination boundaries at true height levels

computed as in Scction 4.3
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Abstract

This paper proposes a method wﬁich may be used to find an
electron density profile yielding the least squares error fit
to the observations. ‘Operatof judgment of the quality of
observation is taken into account in the data reduction
process. A method by which tiﬁe and position variations
occurring over the observation period may be corrected for

is also proposed.



TR-1
Page 3

Introduction

Some basic techniques for reduction of ionogram data have
been described by Jacksonh3], Improved processing téch~
niques have been investigated by Madsenllqa The basic
problem is to find the electron density, N, as a function

of altitude, h, corresponding to the observation of apparent
path length, h', as a function of frequency, f£. The relation-
ship between N(h) and h'(f) is such that it is convenient to
map a set of points from the N(h) plane to the h'(f) plane
and inconvenient to map from hf(f) to N(h). For this reason
iterative procedures have been used to find N(h) given h'(f).
Madsen terms the mapping from N(h) to h'(f) the Inverse
mapping. Madsen's inverse mapping technique requires inter-
polation between observation points in the h'(f) plane.
Neither Jackson's nor Madsen's techniques consider the time/

position variation of the observation over the duration of a

single ionogram.

Madsen has suggested** that present methods of processing
ionogram data might be improved by a method incorporating

either or both of the following features:

* Numbers in parenthesis refer to bibliography.

*% YVerbal discussion.
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1. Time/position variation over the observation

period of one ionogram is accounted for.

2. Data from usable portions of all three
traces, Z, 0O, and X, from a single ionogram are used

effectively to generate the N(h) profile.

The balance of this paper describes proposed methods for
accomplishing these goals. The methods described for
accomplishing items 1 and 2 above are essentially independent;

i.e.,,; either may bo nsed without the other.
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Approximations of h' (f,t)

A basic problem with swept frequency ionogram data is that
h'(f) is also a function of time (and hence position) whereas
what we would like is h'(f) data for a fixed time and position.
Therefore, we should write our observation as h'(f,t) rather
than h' (f) to show the time dependence. This is illustrated

in Fig. TR-1-1 in which we see that h'(f,t) forms a surface in
the three dimensional cartesian coordinate system (h',f,t).

All observations made using a swept frequency sounding system
must lie in the observation surface, f(t). Therefore, as shown
in Fig. TR-1-1, a swept frequency ionogram consists of the locus
of points forming the intersection of the two surfaces h'(f,t)
and f£(t). A sequence of ionograms can be visualized by a
sequence of observation surfaces spaced along the t axis in

Fig. TR-1-1.

While it is true that the time/position dependence of the
electron density profile, N(h,t), could possibly be found
directly from h'(f,t), it appears far simpler to first find

h'(f,t,), where t, is some particular point in time, and from

k
this find N(h,tk)q With this approach the mapping (or inverse
mapping) problem is not increased in complexity by the added

dimension of time/position.
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&

Basically, our problem, then, is to construct the surface

h*(f,t) of Fig. TR-1-1 based on our h'(f(t)) observation. The

intersection of this h*(f,t) surface with the plane, t = t s

yvields hs(f,tk), the desired result.

A curve may be fit to a set of points by a number of common

(6)

methods including Lagrange polﬁnomial interpolation ’

(3) (3)

spline fit ; and an approximating function . Both the
Lagrange polynomial interpolation and the spline fit pass
exactly through all of the given points whereas the approxi-
mating function will not. Therefore, for a large number of
noisy observations the approximating function method may give

(w)

superior results. Birkhoff and Garabedian have described
a method of spline fit for a surface. However, because of
the large number of noisy obseryvations within an ionogram,

I believe that an approximating function method would be best.
Actually, a three stage hybrid method using an approximation

function in two stages and a spline fit in the other will be

described.

In a typical one dimensional approximation problem we select

a function g(ai,f) with which we wish to approximate the
function h’(f). The parameters, a;, are selected to minimize
the error as defined by some measure of error E{g(ai,f), h*(f)}.

In this problem we shall account for the time dependence by
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using time dependent parameters, ai(t). The time dependence
of ai(t) can be found using points from sets of ionograms.
The choice of an approximating function for g(ai,f) is
critical as regards the number of parameters, a, s required
for a suitably good approximation. A set of orthonormal
functions is frequently selected as a set of basis vectors
for analytical convenience in evaluating a; - However, in
our case we shall use a gradient method (%) for finding a;
so that we may select a g(ai,f) so as to minimize the number
of a; instead. To promote convergence of our gradient method
of selecting a; we shall use a least squares measure of error

(22 norm) which should be satisfactory from a philosophical

standpoint.

In selecting the approximating function g(ai,f) we consider
the general shape of an ionogram shape as shown in Fig. TR-1-2.

We notice the following features:

1. h’(fl) =0

dh’
2. |df
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A typical orthonormal function expansion would require many
terms to approximate these features. Therefore we consider

the following function,

a

. 2

- 2
g(ai,f) = a, + as(ﬁn £) + a6(2n £)°, aq < f < a,
g(ai,f) = a8(£n f2/f) ; a. < f < f2

Notice that the points of the piecewise function are included
in the parameter set. This function clearly satisfies all
three of the features of h' (f) listed above. If we constrain
g(ai,f) and its first derivative to be continuous at the
joints then we will have only five parameters to adjust for

the least mean square error fit; i.e.,

g(a;,az) = g(a;,al)

g -
5¢ (a5 ra3)

99 +
5t (a;ra3)
g(a;,az) = gla;,al)

d -y _ 0 +
5%(aiya7) = 5%(ai,a7)
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and we find {ai} such as to minimize
. 2
[h®(£) - g(ai,f)]

subject to the constraints on ccontinuity. Using the four
continuity constraints we eliminate four of the ai's leaving
five ai's which we can renumber and assign as elements of a

minimizing vector to be found using a gradient technique.

The steps involved in finding an approximation are:
. . . . .th
1. PFind a function, g(aij,f), approximating the j

ionogram h‘j(f,t),

2. Select a set of points, {g(aij'fm)’fm} lying in the
jth observation and apply spline interpolation in time
between successive ionograms to find a set of curves
{g‘(fm,t)}. The intersection of these curves with a

plane of constant time, t = t, gives a set of points,

(I
{g'(fm,tk)}, This set of points approximates ionogram

data obtained at the same instant in time.

3. Find a function g(ai(tk),f) giving the least mean
square error fit to the point set {g'(fm’tk)}° This

function g(ai(tk)gf) is our approximation to an
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ionogram taken all at the same time instant, tks
From this we can select a set of points, {g(ai(tk),fm)},

from which to compute N(h,tk) .

In finding the approximating function in step 1 above we may
use a weighted least squares cost function to discriminate

between good and bad data points from the original ionogram
data. We define the cost function for the jth ionogram data

as

where the weighting function, W is made 1arger'for well
defined points, h'(fn)y and smaller for poorly defined points.
Assignment of W would be by operator judgement using some

arbitrary standard scale.
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Approximation of N(h,t)

The basic problem of determining N(h) from h'(f) data (or
from g(ai(tk),f) which approximates h’(f,tk)) appears to be
a problem in nonlinear estimation since we are given a set
of noisy observations and some nonlinear mapping function
relations N(h) and h'(f). If we were able to define a
suitable approximating function for N(h), we should be able
to find a least squares error fit to the observations using
a gradient technique.

(1)

Examination of Fig. 3 shown in reference' ’, shows that a suitable

approximating function might be

-b32n N
h = bl + b2e
-b
_ 3
= bl + bZN
or
l/b3

where bl’ bzy and b3 are parameters to be determined. These

parameters can be written as elements of a state vector

Z = (bl’bz’b3)



TR-1
Page 14
The above approximating function for N(h) can be used to
find (using inverse mapping) h¥(f), the h'(f) data computed

from N(h). A cost functional is now defined as

j=

J=p B (7 (£) - h’z(fn))2
i=1
M
BT TETY - nt 2
+ g, By(h () - h' (£))
i=1
L
A 2
by, G (E) - hT o (£))
i=1

where the subscripted z, o, and x refer to the three major
types of waves producing the ionogram and the weighting factors
Ai, Bi' and Ci would account for the relative quality of the

data points.

To apply the time position correction described in the
provious scction we would replace h‘(fn) by g(ai(tk)’fn) in
the expression for J. In this case the point weighting has
already been accounted for in determining g(ai(tk),fn) so

that A, =B, = Ci in the expression for J.
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A gradient technique (5) can now be used to determine the

state vector

Z = (bl’bZ”b3)

such as to minimize the cost function, J. Therefore, we
will have determined a least mean square error fit of our
approximating function, N(h), to the 6bservations, ht'(£f),

or N(h,tk) using g(ai(tk),f).



TR-1 .
Page 16

Conclusion

Methods have been described for finding N(h) or N(h,tk) from
ionograms using approximation theory. A gradient technique
is proposed to find the parameters of the approximating
function. The success of the technique will depend upon the

following factors:
1. The appropriate selection of the approximating model.

2. The speed of convergence of the gradient method

computation of approximation model parameters.

The approximation model proposed for N(h) is quite simple and
when used with h' (f) data would lead to results which could

be compared directly with present N(h) results. Therefore, I
recommend that this portion of the proposed method be evaluated
first., Since the proposed model is so simple an additional
term involving two additional parameters would not impose a
computational hardship if experiments indicate a more accurate

model is required.

Approximating h'(f,tk) by g(ai(tk)yf) appears to be a more

difficult problem since estimation in two dimensions, frequency
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and time, is required. Also the form of the approximating
function appears to be more complex than for N(h). Another
factor is that results obtained by accounting for the
time/displacement changes over a single ionogram could not
be compared directly with results obtained by current
methods. For these reasons I recommend that the approxi-
mation of h’(f,tk) be attempted as a second step following

the approximation of N(h).



(2)

(3)

(+)

(5)

(s)
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A WEIGHTED LEAST SQUARES

APPROXIMATION METHOD*®

Given a function f(x) in terms of a set of data points {Xi, f(Xi)};
i=1,....,N, we wish to approkximate f(x) by the function

F(X, a), a = (o g,uK)T,where a is a parameter set which we

TARE

will select to minimize the weighted mean square error of the

approximation. We approximate the differential of F(X, a) at

¥X. as
i

EF(Xi, a) BF(Xi, o)
AP (X., o) = ——g" Ao, + ..o + ——et An
i’ = da 1 da K

1 K

= VQF(Xj' a) Ao i=1, ..., N

BF(Xlr g‘) BF(XiI 2)
where V  F(X., o) = PR
o 1 Bal SGK
T

We would like to find the AF such that
£(X,) = F(X,, o) - AF(X,, &) =0, i=1, ..., N
or AF(Xi, a) = f(Xi) - F(Xj, ), i=1, ..., N

Now we wish to find the Ae which will produce this result. We

have

*A. J. Mallinckrodt, "A Weighted Least-Squares Adjustment for Network
Synthesis" Astrodata Technical Report, July 1964.



TR-2
Page 2

gf(‘_l) - F(Xy, @) | Vo F(Xy, a)

z | - P |t
| | |
%f(XN> - F(X, @) | Va F (X, g)j

e = A Ao
. -1 - -
g = ‘ : P A = 5
£(Xy) - F(Xy, o) Va F(Xg, o)

and the weighted least mean square estimate for Aa is

sax = (aTomy ™t AToe

where Q is a symmetric positive definite N x N matrix. Now we
iterate on o producing sequentially

+1

We continue iterating on o until

Aa* - 0
Now we ingquire as to the ervor criteria imposced on e by this
nethod.,  We note that

Aa* = 0 <

\4

A7 Qe

i
{o
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IF (X, ) N OF (X, 0 gé
<TTR 30« Z Qljej + v 8 & @ + aa QNjej b O
k . k .
J=1 i=1
k=1, ceeo, K
Now consider the cost functional defined by
N N
- oTF -
J=eQe= 3 > eiQijEJ
i=1l j=1
N N
=eIZQljej+ . +eNZQij
j=1 j=1
min J < I R e gJ =0, k=1, , K
i o o]
[e3 = k
. N N . Ye .
90y = 2 X o Qijej * elQlj 8ak
i=1 j=1
N N aei
=2 7, 2, -gai ijej since Qij = jS
i=1 j=1
doe. JIT(N., )
i3 t M_];. — et e },V.__ —
bBuat “”k ')‘\“k
- N éi IF (X, )
f - ) — ., e, k=1, ... K
- BQ}F 2 Z.J L au’k Qlj :]l 4 [
N i=1 =1
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We see that
T N N BF(Xi, o)
(Vad) * = 0 «== > > s Q =0, k=1, ...., K
- Oge i3 3
i=1 jg=1
| | NN g, o)
and since Jda* = 0 <= z: E: o Qijej = 0
i=1 j=1
we have Mﬁ==0«ﬁ9(VJﬂ)=g == min J
= a

Therefore, by iterating on o until we have achieved Ao* = 0 we

have actually achieved a weighted least squares fit to f(x) by
F(X, a). The desired result is achieved by sneaking in through

the back door.

We see also that if J were quadratic in o then F would be linear
in o so that AF = VoF°Ao would be exactly true and convergence

to Ao = 0 would be achieved in exactly one step as with the
Newton-Raphson method. For the case in which F is linear in qa,

J quadratic in «, the Mallinckrodt* and Newton-Raphson methods

are identical. An advantage of the Mallinckrodt algorithm over
the Newton-Raphson is that only first order partial derivative
are required while second order partials are required for the
Newton-Raphson. Sce IFig. TR-2-1 for a flow diagram for the least

squarces determination of N(h).
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START:
g’”}'“} 1. Initialize oy, 3 = 1,K
. = T
2 2. Compute hi’ i=1,N, 5 fi = fi
3 3. Compute Hi’ i = 1,N (Madsen Inverse Mapping)
Ty 4. Do 20 j = 1,K
Perturb aj
Do 10 i = 1,N . ,
. * oo E ok t Compute
Compute Eij:j fi fi A
Compute hij* (Madsen Inverse 13
10 Compute A,. = Ry, - h
1] 1]
20 Restore uj
% 5 5. Compute Ag = (ATQA)“~l ATQ(Q'—E‘)
A YES ;
oo 6. |bda| < &7
NO
iwimg 7 a = o + Ao
._ [
‘ J
N
j}%wwwj

{8 8. N = F(h,q)

Fig. TR-2-1. Flow Diagram - Least Squares Determination of N(h)

' . .
Scee Technical Report 3
3
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INVERSE MAPPING TO SPECIFIED £

We would like to perform the inverse mapping operation such that

the frequency, £, of the end point is prespecified, as shown in

Fig. TR-3-1.

N 4 2 2
fx”2f11+2/fn + Aty (1)

£ -£Ff - £°=0 (2)

[13]

According to Jackson

f. = 2.8 B (3)
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From our approximation formula for N we have

N = F(h,;o) ' (5)

e

A representative curve of this function is shown in Fig. TR-3-2.

e .:._M e o £ e _“...-v._«_.__,,,,:;.. }1

Fig, TR-3-2

We see that for any specified value of h we may compute

N from eqgn. (5)

fN from egn. (4)

17
B from FIELDG{ ] and interpolation

f“ from cqn. (3)

f from egn. (1)

Since N and B are monotone decreasing in h, f£_. and fH are also

N

monotone decreasing. Therefore we conclude that f is likewise

monotone decreasing in h. This property permits us to use a
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e ——a—

successive approximation technique for finding h 3 ‘“ - f‘ > 0.

A convenient algorithm for this purpose is Bolzano's root finding

*
technique.

We may elect to select h to within some given tolerance or to

¥ - f
£

TR-3=-5 show h selected to within .01% of a maximum value.

iterate until 0 < < g¢. Figures TR-3-3, TR-3-4, and

*
Wilde, Douglas J., Optimum Sccking Methods, Prentice Hall, 1964.
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Flow Diagram - Selection of h 3 (N,h) — (H;fx)

Where ?x is Specified
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START:

Initialize parameters
h = hMAx/z’ A = h/2
Compute N, f, f; = fo A= A/2

£ - F
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£y = /N/12400
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Flow Diagram - Selection of h 3 (N,h)—A-(H;fé)
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START:

Initialize parameters
h = hy, /2, & =h/2
Compute N, fiqr Be £y fz, A
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N = F(h,qa)
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Flow Diagram - Selection of h 2 (N,h)~é$-(ﬁ;fz)
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SIMPLIFICATION OF MATRIX INVERSION PROBLEM

We are given the problem

AX

li
o

from which we wish to find

A Gauss-Jordan inversion process starts with

(A b)

000
H
s e 90

and through a series of row operations becomes

(I A

-1y

Ordinarily the last column of the augmented matrix is omitted

and X is found by a subsequent multiplication.

For the special case in which A is a symmetric matrix we may
simplify the procedure to reduce only the upper right triangle

of the left matrix to 0's which will produce only the upper

1

right triangle and diagonal of AT, We know that if A = AT,
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then (A" T = 271 so that the lower left triangle of A™ 1 is

found from
ahij = @b

This would reduce the number of operations from NZ(N + 1)

for a savings of 2N2 - 3N.

N
>, 1= % N(N + 1)
i=1

However, when A"l is not required for some other purpose than
finding X, an even gre:ier economy is available by deleting the
I matrix augmentation. A further advantage is that A need not

be symmetric. Here we would have

(A * b) = (I © X)

® -

Not only would we save Hﬁﬁ—i NZ(N + 1) = % N(N2 - 1) operations in the
inversion process but also another N2 operations in the multi-

lb, which has been eliminated. Therefore,; the

1

plication, X = A
total savings in this method amounts to {f N(N2 - 1) + Nz}

as compared with the standard inversion and subsequent

multiplication.

For example, consider a 10 x 10 matrix; i.e., N = 1l0. The number

of operations in finding the inverse is

NZ(N + 1) = 1100
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The subsequent multiplication requires an additional N2 = 100

for a total of 1200 operations.

FPinding X directly and not A-l requires % N(N + 1)2 = 605

operations for a savings of 595.

This agrees with the expression for savings of '{% N(N2 - 1) + Nz} =

% 990 + 100 = 595. Therefore, for N reasonably large, say N > 10,

the savings amounts to almost 50%.
Subroutine MXV for computing X, where
Ax = b

is listed on the following page.
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TIME SKEW PROBLEM

Fig. TR-5-1 shows the basic assumption made in the Jackson method
of ionogram reduction. Perhaps instead of assuming successive
values of Ni one could interpolate between successive ionograms.
Since NO (electron density at satellite height) is the only value
obtained without assumption of previous values, this would apply
only for essentially constant satellite height between adjacent
ionograms. Also, while interpolation would be possible in reduciné
the first ionogram, extrapolation would be required for the

second. Interpolated and extrapolated values would be used in

place of the assumed values of Ni shown in Fig. TR~5-1.

tO tl t2 t3
NO o o — - ..o N, ASSUMED . __ NO ASSUMED y",oﬂNO ASSUMED T,

o

E h (fl)

Nl d L “¢*Nl ASSUMED __ 5“Nl ASSUMED .. __
]
h (f2)
N, b ~{ N, ASSUMED
h'(fB)
N,

Fig. TR-5-1
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For the least squares estimation approach an entirely equivalent

set of assumptions is made as shown in Fig. TR-5-2.

%o £ £ t3
£y o I Qe e o g £, ASSUMED
§
h' (£)
Yw.‘n ..} . _bh'(f]) ASSUMED
]
V ht(£,)

o b h'(fz) ASSUMED

Vi e,

Fig. TR-5-2
Only four data points are shown for convenience.

The concept of interpolating h'(fi) data points from successive
ionograms is immediately obvious from the last figure. Unlike
the case for Ni values, only interpolation (no extrapolation) is

required for h'(fi) values.

Since the approach of interpolating h'(f) data is regarded with
suspicion by knowledgeable people skilled in the art, and since
solution by interpolation of N(h) is fraught with difficulty,

the following approach is proposed.



TR-5
Page 3

Interpolate h' (f) as described above.

Compute N(h) from interpolated h'(f) data.

Interpolate NW(h) as obtained in step 2 in order to

compute h'(f).

If h'(f) agrees with h'(f), then we have found N(h)
profiles which when interpolated yield results

matching the physical measurements.
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OPTIMAL STEP SIZE

BY ONE DIMENSIONAL SEARCH

The computation of step size using the Hessian matrix is based
on the assumption that the cost functional can be reasonably
well approximated by a truncated Taylor series having terms of
no higher order than second. This assumption is frequently
unjustified resulting in a step size which may be either too
large or too small. Tor the case in which the step size is too
small the cost reduction at each iteration is less than could
be achieved resulting in the need for more iterations than
necessary for convergence. A more serious defect occurs for the
case in which the step size is too large; in this case the cost
may increase for some iterations, seriously impairing, if not
completely preventing, convergence to the optimal solution.

This effect has been noted in practice.

Since we know that there exists some step size in the gradient
direction which if sufficiently small will produce a decrease in
cost, we should be able to produce a cost reduction in every
iteration until the optimal solution is achieved. What we would
like to do is to find the step size that will yield the greatest

reduction in cost for each iteration. This optimal step size
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may be found directly (as opposed to indirectly as before) by

means of a one dimensional search technique.

Before we can apply

one dimensional search over an interval we need to define the

interval, S*, to be searched, as shown in Fig. TR-6-1.

J /

Fig. TR-6-1

For the one dimensional search technique to be effective, J(S),

0 < S < 8* must be unimodal.

S* as

mi
S

n

-:-)—g- > 0 =uxd> §%

Therefore, we would like to define

Since we know there exists & > 0 such that J(§) < J(0), it is

clear that defining S* as shown guarantees that J(S) will be

unimodal oerr the interval 0 < 8§ < 8%,

Having defined the interval, we can now apply either a Fibonacci

or Golden Section search method.*

*Wildoe,

Douglas J., Optimum Seeking Methods, Prentice Hall, 1964
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We can approximate S* by the following algorithm:

e

J(s;) 83z -5, V I ; 8y =0

J(s;) < J(s;

l_l) T S* > Si’ g > 0

1

1
Continue this process until J(8;) > J(S;_;). Then let S* = 8.
-3

If J(Si) < J(Si—l)’ then let Si+ = Ksi' K > 1, and repeat test.
Perhaps Si = 10 and K = 2 would be good choices initially.
Having now determined a value for S* we may search this interval

for the value of 0 < S < S* which minimizes J.

A search by Golden Section will be almost as efficient as a
Fibonacci search and should be less subject to round-off error
in the final steps. Twelve iterations will define S to within

0.5% of S*,

We can compare the burden of computation for the Golden Section
search relative to the Hessian matrix method as follows. The.

cost must be computed once per iteration for the search method
and once for each element of the Hessian matrix. The number of

elements, K, to be computed in the Hessian matrix is given by
_ 1
K—E(N-}' 1)N

where N is the number of state variables.
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N K
2 3
3 6
4 10
5 15

If we assume that twelve iterations of the Golden Section search
is adequate, then we see that for four or less state variables,
the evaluation of the Hessian requires fewer computations but

more computation for five or more state variables.

Refer to Fig. TR-6-2 and Fig. TR-6-3 for flow diagrams for the
interval computation and the Golden Section Search for optimal

step size,

Fig. TR-6-4 is used in conjunction with Fig. TR-6-1 to show the
sequence of computing values in successive iterations in the

Golden Section Search.
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Compute E
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E2 = E
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START :
Yl’ S
1. 81 =0
Ml = 0
2. Z, =79, -
i i
Compute E
El = E
3. ML > 07
4. Z. =Y, -
i i
Compute E
E2 = E
5. M1l = M1l +
6. Ml = 127
7. 8§ =8+ 1
8. E2 > E1?
9. El = E2
51 = 81 +
S = .6188
10. E2 = El
S = .618S

(0.3825 + Sl)Di, i

(0.6185 + Sl)Di, i

. 3828

Flow Diagram - Golden Section Search
For Optimal Step Size
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Fig. TR-6-4. Golden Section Search Value Computation Sequence
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HORIZONTAI, PROCESSING

Introduction

Because of the motion of the sateilite relative to the earth, it
is a basic property of the swept freqﬁéhCy technique that within
the same ionogram successive h'(f) data poirnts correspond to
soundings taken through the ionosphere at different earth based

coordinates (see Fig. TR-7-1).

It is implicitly assumed in currently applied data processing
methods for converting h' (f) data to N(h) profiles that the
electron density profile is constant over the section of ionosphere
traversed by the satellite during the period of one ionogram.

This assumption is required not only for the lamination technique

[13]

of Jackson (forward processing) and Madsen* (inverse processing)
but also for the least squares estimation technique described
elsewhere in this report. The error in the electron density

profile resulting from this assumption is not known.

Horizontal processing is a method of data reduction which does
not require the assumption of constant N(h) profile over the
section required by one ionogram. In horizontal processing

electron density values along the satellite track are estimated

*See Section III, this report
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by linear interpolation between successive ionograms. Horizontal
processing may be applied in conjunction with either lamination

or least sguares methods of data processing.

Lamination Method

In the lamination method it is essential to have a data point

for the exit frequency so that the electron density at satellite
height may be obtained. Although we would prefer to linearly
interpolate electron density at constant height, since the
satellite height cannot change greatly between successive
ionograms, we may linearly interpolate to obtain the electron
density for times between successive ionogram exit frequency

data points. It is the interpolated electron density value

that is used in the computation of electron density for each
successive lamination. In the Jackson method of Forward Processing
it is not clear how to select h'(f) points so that the lamination
altitude will be the same for successive ionograms. With the
Madsen method of Inverse Processing the lamination boundaries

may be selected to be the same. All interpolations of electron
density following the first at satellite height may be made at
constant height., Of course, extrapolation rather than‘inter~

polation will be required for the last ionogram in a sequence.

illustrated in Fig. TR-7-2. At time t., the

*he exit frequency for ionogram 1. A

The interpol

point 1 1s obtaincd
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similar point is obtained for time t21 from ionogram 2. An h'(f)
data point is selected corresponding to a time tlZ' Point 1 is
now extrapolated forward in time to tl2' giving point 1'. The
electron density at point 1' is used to compute point 2. This
process is continued until the last useful data point has been
processed, say point j. Then we!will have a complete N(h) profile
corresponding to time tlj for the first ionogram, t2j for the

second, etc.

In the lamination method there are two possible approaches for

the interpolation of electron density at satellite height.

The first of these is just to find

try ” By
Ny (hij * T =7 Py, 541 7 Py t2j> = Nylhygetyy)

1,j+1 13

23 7 "1j ) (h )
— N. e sqrty 2q) = No(hy., by ‘
1,5+1 tlj j+1 s J+1 /3 ] J J

-+

t

where

i

Nj(h,t) eclectron density at height h and time t

from jth ionogram

. th

height from i point from jth ionogram

th

oy
it

ij
ionogram

ﬁo
i

id time of ith point from j
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The second approach is to find the electron density from the
ionogram having the higher satellite position at the satellite
height of the adjacent ionogram without interpolation. This
step is easily justified because of the very small time interval

involved in this case. To be specific, suppose that

h > h

1,j+1 13

Now., using the Madsen Inverse Processing technique, we can find

Nop1 Py 5178, 541 = Ny (hyyety 54)

Using this wvalue of N,

where we have selected h, = h
j+1

1,5+l 15°

we can interpolate Nj at constant height as

) = N_.(h

Ny(hyrtay 5hy4rt15)

€r3 7 b1y
tl’p j+l - t

+

3 %Nj+l(hlj’tl,j+l) - Nj(hlj’tlj@

For either of these cases succeeding interpolations may be made

at constant height as follows:

Nj(hijytkj) = Nj(hij’tij)
tkj - tij
+ — N.,,(h,.,t, . )‘—N.(h..,t..)g
tiyj+l tij j+1 i7", g+1 377137 713

By this means we may compute successive laminations as shown by

Fig. TR-7-3.
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hij’flj'tlj 4| Compute Nj(hlj'tlj) I i =1, ve.., N
; ! ionogram number
¥
h2j’f2j’t2j —~— 3, Interpolate Nj(hlj’th)
! y )
Compute Nj(th’t2j> J

: ; Int . sy o
h3j’f3j’t3j el  Interpolate Nj(hlj t33)
)

Compute Nj(th’tBj)

'

"t4ﬁ el Interpolate Nj(hl

Nythaytsy

Ny hogrtay) iy thyyrtyy)

k4

Compute Nj(h4j’t4j>

N
v

etc.

Mg, TR-7-3. Horizontal Processing Using Lamination Method
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Difficulty will be encountered, of course, with ionogram sequences
in which few successive complete ionograms are available. In
these cases interpolation in conjunction with a least squares

estimation may offer a solution.

Least Squares Estimation

For this method the initial estimate for N(h) is determined
without extrapolation. Successive revisions to this estimate using
interpolation are then determined iteratively in order to improve
the estimate. As shown in Fig. TR-7-4, the initial time skewed N(h)
profiles are determined without regard to change in N(h) profiles
with position along the track. Using constant h (or nearly so)
interpolation, a sequence of N(h) profiles corresponding to
constant time are found. This sequence of constant time N(h)
profiles is used in the inverse mapping process in the second
iteration to find an improved estimate of the time skewed N (h)
profile. All ionograms in a sequence are processed in this

manner before proceeding to the next iteration. This process of
estimating time skewed profiles followed by interpolation may be
performed sequentially to improve the estimate. As a final step
the time skowed N(h) profiles are interpolated to the desired

constant time N({h) profile.

We know that in actuality the electron density profile is a

ot

function of position along the satellite trace so that we may
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write the electron density approximation

N(h!ﬁ!t)

For the least squares method we need to use the inverse mapping
{Ni(hi,g_,tj), i=1, ..., j}m—»’ﬁ“é(fj), J =1, vieur J
where J = number of h' (f) data points.

Since t and f are uniquely related within the time period of one

ionogram we may write that

£, <> t.
J ? J

For the first iteration we merely use

{Ni(hi,g): i= 1! °-f°f j} — Hé(fj)

However, for subsequent iterations we find

Ni(hi,g,t.) projected on constant
time plane

by lincar interpolation as described in the preceding section.

Therefore all subscguent iterations make use of

W 4 = 5 P
{Ji(hi,g,tj), i 1, ... j} mm%?hj(fi)

For the least squares method this process is shown in the flow
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’ hi(£;)

REVERSE, MAPPING

]

e T
Ni(hi,g) wﬂ~hi(fi)

¥
LEAST SQUARES

hi(€,) - Hj(fi)
J=3, h, (F.)

i

i I . . o .
m1? J Nl(hl,g,tl)

INTERPOLATION

i=1, .0, J

Ni(hi,g,tj)

l, uona[N

[N
il

e .

/’/ \*‘\
YES ~ ENOUGH K‘\‘%
e < ITERATIONS
~ 2 //
o -
! . e
E S
| ; NO
N (hj’ ’tH) EVERSE MAPPING

Fig. TR-7-5. Horizontal Processing Using Least Squares
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Abstract

A new computational algorithm is proposed for constructing the
pseudoinverse of a matrix. The method is believed to be more

efficient for machine computation than previous methods.
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Introduction

A problem which arises frequently in the application of estimation

(2)

theory is to find a best estimate of x from
AX =y (1)
where ' A is m X n

is n x 1

[

If A is a square matrix of rank n then x is uniquely determined from

X = Amly (2)

lowever, most Trequently A is a rectangular matrix with m > n.
For the case in which the rank of A is n, the least squares estimate

(2)

can be found from

= aTm 7t ATy (3)

since r(A) = n > r(ATA) = n > (ATA) is nonsingular

(r(aA)Y = rank of A).

llowever, for cases in which r(A) < n it follows that r(AiA) < n

3

and (AIA) is sinqular so that eq. (3) does not apply. For these
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(1=%)

may be used. The pseudoinverse is

(v,

cases the pseudoinverse

defined by the following three requirements

1 atax = x v e M@t = R@AT) (4)

11 Atz =0 vz e R = vl (5)

ITT  A'(y + z) = Aty + 27z Vy e R(n) = n (Tl (6)
vz e R(A)T = n@aT)

where y ¢ N(aDL, 2z e v o yTz =0 (7)

N(z\)~L is the subspace in En which is the orthogonal

complement of the null space of A,
T . . : T .
R(A") is the restricted range space of A" in E_,

!E(A)-L is the subspace in Em which is the orthogonal

complement of the restricted range of A,

N(Al) is the null space of AT in Ema

Therefore, we can decompose Em and E as follows:
n

) . “

R (!\) [ [.m
TJ:I

N{(AT) o« E

R(AT) o FE

N(A) o E
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L
E = NaDT @ v @il

R(A) &R (A)_L

i

R(a) = n(aT)"

R (A)“L = N (aT)

L
E_ = N{a) « N(&)
- vl @ r@anT
R (AT) = N(A)J"

L
R (D)™ = N (a)

an m x n matrix

inverse of A

pseudoinverse of A

pseudo-pseudoinverse of A (meets only requirement I)

transpose of A

null space of A; z € N(A) < > Az =

j©

a restricted range of A

orthogonal complement of N(A)

space of all column vectors of m clements
space ol all column vectors ol n olements
for overy

an clement ot

sucih that

direct sum of subspaces

contained in
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For the case in which A is a nonsingular square matrix the pseudo-
inverse becomes the inverse. The pseudoinverse has the property
that | Desoer’ C have shown thay

X =AYy (8)

yields an estimate for x which is best in the sense of least

s halt(iie deters
squares .

The‘ébmputétioﬁal methods described by Greville(l) and Deutsch(z)

(¢)

require the selection of linearly independent sets of rows

and columns in order to form the pSeUdéinverse; "While this
approaéh is Very goéd‘fof an undérstaﬁding of the construction

of the pséhdoinverée_and works Wéllyfor simple contrived examples,
if is awkward to apply in practice.

Aoki(3) overcomes this problem bdeeveloping a construction of

the pseudoinverse using eigenvalues-and normalized eigenvectors
of ATA and AAT*. While this 'method  is straightforward and well
suited for machine computation, the determination of eigenvectors

is a lengthy procéss'and unattractive from the standpoint. of

efficiency.

*Matrices are assumed real so that only simple transpose rather
than conjugate transpose is used.
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Proposed Method

zadeh and Desoer(h) have shown that

+

at = @aTay*aT (9)
so that the determination of the pseudoinverse of any rectangular
matrix can be reduced to finding the pseudoinverse of a square
symmetric matrix.

th order matrix has n linearly

()

It is well known that any symmetric n
independent eigenvectors(7)g Therefore, according to Pease
ATA is semisimple and can be written in terms of its eigenvalues

and projectors as

n
T, _
ata = 5 AP, (10)
i=1
where Ai = eigenvalues of ATA
P, = projecfors of ATA

We note that if ATA is singular then Ai = 0 for some i, and that
if r(ATA) = r there exists r nonzero values of %iu We define the
st § as

S = {i : Ai # 0} (11)

Equation (10) can now be rewritten as

aTa = A.D.
1 1

ieS
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Now we will show that the pseudoinverse of ATA is given by
T .+ ~-
(A7"A) " = > A, lp, (12)
i i
ieS

We see that

T+, T -1
(A" 2) " (ATA) = ( zjxipi>< Sy Pi> (13)

ieS ieS

Applying the fundamental property of projectors(g),

Pin = 6ijpi - (14)
to equation (13) gives
T .+, T _
(A7A) (A7A) = P, (15)
ies

which satisfies the defining relations given in equations {(4),(5), (6).
Therefore, the pseudoinverse is given by egn. (12). Next we

shall develop a recursive method for finding the pseudoinverse.

5 . 3 8 C
Zadeh and Dcsoer( ) have described Fadeeva's method( ) for finding

oo
the resolvent (s - A A} & as follows:

n
(sI - ATyt =Bl8) o 5~ & _ (16)
lx
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. .n n-1 n=-2
di{s) = s + d.s + d.s + ... + d .8 + d (17}
i 2 n—-1 n
/ - n=1 n=2
B(s) s BO + 8 Bl P SBH_Z + Bn=l (18)
B = I d. = -tr(ATA) (19)
0 1 r
o 4T o T
Bl = BOA A + dll d2 = =1/2 tr(BlA A)
_ T o T
B2 = BlA A+ dzi d3 = 1/3 tr(BzA A)
_ T _ T
B, = B _|ATA + 4T d, = -1/k tr(B,_;A A)
B T _ T
Bn~l = Bn—ZA A+ dn@ll dn = -1/n tr(Bn~lA )
¢ = B ATA + d I where tr = trace
n-1 n

The inverse of a nonsingular matrix can be obtained from equations
(16)y, (17), and (18) as

1 _ B(0) n=-1 (20)

T, - _
(A"A) 7 = FGY T A

However, the pseudoinverse can be found more easily from eqn.

(19) .
First, suppose that
r(ATA) = n (21)

Since from equation (16) it is clear that the roots of d(s} are

given by the Ai, it follows that

dn # 0 (22)
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Then from egn. (19) we have
BLAA+ dI =9
B
and (ATA)W1 = - g,1 (23)
n
as before.
Now suppose that
r(a'A) = n-1 > 0 (24)
Then since one of the Ai = 0 it follows that
dn = ( (25)
dnml # 0
Using these results in egn. (19) gives
T
Bnle\ A= ¢ (26)
(B .ATA +da LI)ATA = ¢ (27)
n-2 n-1
Premultiplying the last equation by ATA gives
T anZ T T T
(A"A ATA + ATA)ATA = ¢ (28)
n=-1

For egn. (28) to be satisfied

353 }3 " )
AtA ﬁﬁm5~ATA AR = ¢ (29)
n—1
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The wvalidity of the last statement may be shown as follows.
From the way in which the Bi are formed in egn (19) it is
clear that Bi and ATA commute. It is easily verified that
matrices formed from sums and products of commuting symmetric
matrices are symmetric¥*; therefore, from egn. (19), the Bi
are symmetric. If two real symmetric matrices commute, then

. . . . 10
there exists a common diagonalizing matrix, T, such that( )

Ay 0
Tml(AlA)T = - (30)
0 A
n
A
vll 0
g = ., (31)
i .
0 v
n ot

Operating on eqn. {28) with T gives the following sequence

vt aTa dn"2 Ata + aTayatar = ¢ (32)
n-1
~1.T ~1 P2 -1 1T ., =1
{(r “A AT) (T a--T)(T ATAT) + T "ATATI(T "ATAT) = ¢ (33)
n-1
b 1. n-2 el E 3 IS 1
’ L T [ T ! | : Pl ° 5___
| ¥ . N |+ E | | =
| L Ty T2 : ‘2 i : P . |
[0 noo Vi 1o >\ni L0 Anj iO Anj

oy o ) B
* (z\[‘g ) = 3T A COBA = AR

¢ (34)
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n-2 .
(}xivi ki + Ai)ki = 0, 1 = 1, 2, cco., 1N (35)
T
But r(A A} = n~1 > 0 == d n-1 > 0 values of Xi # 0 so that
we. must. have. . .
n—2 .
xivi ki + Ai =:0,.1i.= 1, 2, ceee, 10 (36)
. B _. ,
< S ATA dn 2 ATA + APA = ¢
n-1

Therefore, egn. (29) must bhold..

The requirement of eqn. (4) can be restated by premultiplying

both sides by A to give

+
ratax = ax . vee N = @D (37)
Let us denote by A++ a matrix which meets requirement (4) but not
necessarily (5) and (6). Comparison of edn. (29) with the

form of%eqn. (4) givén above gives{
FyE RN : ) ; ,"‘
(Tt = - RS (38)

We could call at™ the pseudo-pseudoinverse of A since it satisfies
only requirement I equation (4) but not necessarily requirements

IT and III, egn. (5) and eqn. (6).
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Next we consider the case for which
T
r(A"A) = n=2 > 0 (39)
Then since two of the Ai = 0 it follows that
dn = 0 (40)
n-1 0
n-2 7 0
Using these results in eqn. (19) gives
T, _
B _AA = ¢ (41)
T .2 _
B _,(A"A)% = ¢ (42)
B =B .ATA +d .TI from (19)
n-2 n-3 n-2
T T,..2 _
(B, _3(Aa"A) +d _,I) AR = ¢ (43)
Premultiplying both sides by ala gives
T Bn—3 T T T 2
(ATA AMA + AA) (AN = ¢ (44)
n-2
For edqn. (44) to be satisfied
T Bn--3 T T
(AAa———-AA+AA)=¢ (45)

n-2
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which can be shown by a diagonalizing transformation as in the

case for r(ATA) = n=1 > 0.

Therefore, egn. (45) must hold so that

a (46)

Continuing in this manner we find that for
T _ N
r(AA) = n-j > 0 (47)

we have

(aTay*t _p-l-j (48)

i
I

It is not difficult to find examples of matrices such that¥*
++ T+
T SRR N (49)
However, we can show that

4

Ti ++ ik
AT = ATy AT

is a valid extended version of ogn, (9). Pirst consider

requirvement I of egn. (4) in the following form

I aA'Ax = Ax vx e N(a)T

*A simple example suggested by C. W. Barnes is A = (é 8) for which

T o ++ _ (10 o+ _f10
(A™A) = <O l) and A = (0 O)
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Inserting our proposed solution, given above, yields
Al (ata ++AT}A§V: AX (51)
ATA(ATA)+fATA§ = ATA§ (52)

which is satisfied by the way in which A was defined.

Next we consider
) L+
IIT Az =0 Vz € N (aT)

. . + .
Inserting our proposed expression for A gives

++ T
(aTn) Atz = o vz ATz = 0
so that reguirement II is satisfied.
Finally we consider
! + o+ + T, L
I1x A(y +z) =Ay+ Az Vy e N(A )
Vz € N(AT)

Substituting our proposed solution gives

ATa) Ty + 2 = T ATy + (aTa) ATy

so that our proposed solution results in the proper decomposition

of the space as given by the direct sum

B,o= N e v @
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Therefore we have shown that
+
At = (aTa) AT
T +4- .

where (A™A) meets only requirement I (egn. (4)).
Combining this last result with eqn. (48) gives

+ anl~' T

A = - *H“—fl A (53)
n-—j

However, since we are not directly interested in the rank of ATA

, +
we can find A as

where k is the largest value of i for which di # 0.

We see from egn. (19) that approximately n3 scalar multipli-
cations are required to evaluate Bi and di’ 1 =1, 2, ceee, N
Therefore, the number of computations rquired to compute the
pseudoinverse by this method is the same order of magnitude as
required to invert a nonsingular matrix by the Gauss-Jordan

method.

The steps in the computation of the pseudoinverse of A may be

summarized as follows:




Form ATA

Compute Bi’ dj

Find k as the largest i for which di # 0

Compute the pseudoinverse of A from edqn.

, 1=1, 2, ...., n from egn. (19)

(54)

TR-§
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Example Problem

The algorithm described by this paper for finding the pseudo-
inverse has been programmed in BASIC as shown by the flow
diagram of Fig. TR-8-~1 and associated program listing. This
program has been tested using the example problem given by
(1)

Greville with results as shown in Table TR-8-1. These

results are in agreement with those obtained by Greville.



PSE
%
LIS
10
20
30
20
>0
50
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

>

uba 2-20-70

T 10-490
REM PSEUDGINVERSE PREGRAM
REM AX=Y
REM P 1S PSEUDBINVERSE @F A
REM X=PY 15 LEAST SQUARES ESTIMATE
REM A HAS M ROWS, N CBLUMNS
REM ENTER *“DATA (MY, (NY* LINE N@. 1000
REM ENTER MATRIX ELEMERNTS STARTING WITH LINE NO. 1001
REM NUMBER LINES CONSECUTIVELY
REM BEGIN EACH LINE WITH *DATA"
REM SEPARATE ENTRIES BY COMMAS
REM ENTER ELEMENTS IN FOLLUWING SEQUENCE: A BY ROWSs Y
DIM AC10,10XC103,YC103:PCI0-10,B8C110,103-DC103,C¢10510)
REM B AND D ARE MATRICES IN FADERVA®S METHGD
REM C=A(TRANSPOSE I %A
READ M,N
FOGR I=1 T M
F@r J=1 T N

READ ACI, )
NEXT J

NEXT 1

FOR I=1 TO ™
READ Y(CI)
NEXT 1

REM FORM C=A(TRANSPUSE Y%A
FOR I=1 T0 N

FBR J=1 Ty N

LET €CCIsJ3=0.0

FOGR K=1 T8 ™

LET CClIsJd=C(IsJd)+ACKs 1Y %A(K, I
NEXT K

NEXT J

NEXT 1

REM FORM BONxI+J-K), DCIY BY FADERVA®S METHOD
LET BC13=0.0

FOR I=1 TG N

LET DCly=DC1»-CCE-1)

NEXT 1

FOR J=1 T8 N

FOR K=Y T N

LET BIN+J-KI=CClJs KD

NEXT K

NEXT J

FOR J=1 TU N

LET B(N+J, J)=BIN+J,J3+DC1
NEXT J

FBR I=2 T® N

FBR J=1 TG N

FBR K=1 T0 N

LET B(N%I+J:K¥=0.0

Page 19
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PSEUDU 2-20-170 PAGE 2
¥

LIST 500-1100

500 FOR L=1 T@ N

S10 LET BON#I+JoK)=BIN*I+JsK)+BIN*CI=13+JsLI%C(LoK)
520 NEXT L

530 NEXT K

540 NEXT J

S50 LET D(I>=0.0

560 FOR J=1 T@ N

570 LET D(IY=DCI)=B(N*I+J,J)

580 NEXT J

590 LET DCI)=DCIY/I

600 FBR J=1 TO N

610 LET B(NkI+JsJ)=B(N*#I+J5J)+DCI)
620 NEXT J

630 NEXT I

640 REM FIND LARGEST I SUCH THAT DC(I) UNEQUAL T8 ZLR®
650 F@R I=1 TO N

660 IF ABS(D(N+1-1))<1.E-04 THEN 690
670 LET I1=N+i-1

680 GAT@ 700

690 NEXT 1

700 REM C@MPUTE PSEUD@INVERSE

710 FOR I=1 T@ N

720 FOR J=1 TO M

730 LET P(I1,J)=0.0

740 FOR K=1 TO N

750 LET PCI,J)=PCIsJ)-BCN&CI1-1)+I,KI*ACIKI/DCI1)
760 NEXT K

770 NEXT J

180 NEXT I

790 REM COMPUTE X

800 FOR I=1 10 N

810 LET X¢1)=0.0

820 FOR J=1 TO M

830 LET XCIDSXCIX+PCI.Jy*Y(Jdd

840 NEXT J

850 NEXT I

%60 PRINT “PSEUDOINVERSE 15

R70 PRINT

B8O FBR I=1 TO N

890 PRINT P(I,1)5P(I1:2),P(153)

900 NEXT I

910 PRINT

920 PRINT "I%,9XCI)"

930 FOR I=1 T@ N

940 PRINT I.XC1)

950 NEXT I

960 PRINT

970 PRINT “RANK 0F A=":ll

1100 END

>




LIST 1000
1000 DATA
1001 DATA
1002 :DATA
1003 DATA
1004 PATA

>

RUN
PSEUD2INVE

9.5029697
=3.0790872
=6 7364802

5.0640825

B LW N

RANK BF A=

-1004

B b s
b4s=1s-352
'?,b) “Jis=3
2s13,=95-5
T53:20

RSE IS5

E~-02 =5.6580181E-02 2.031885E-02
E=02 3.3135355E-02 3.782432E-02
E-02 3.18K84964k=-02 =3.9074711k-02
E-02 -3.6730228L-02 =8.9090341E£-03

X¢1)
«e 90184433
« 64035636
~1.1573929
6.6114411-02
o

Table TR-8-1

TR~8&
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Conclusion

A computational algorithm using Fadeeva's method has been described
for finding the pseudoinverse. The method is computationally
efficient in that the number of cperations required is of the same

order as for the Gauss-Jordan method of matrix inversion.
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APPENDIX INTRODUCTION

The following eight Technical Reports were written by John Kinkel
in response to an assignment to investigate the proposed methods
0of closed-loop ionospheric data reduction and provide the mathe-

matical proofs necessary for a solid theoretical foundation.

TR-1 "Some Proposed Methods for Reduction of Topside Ionograms

to Electron Density Profiles™

Methods are described for finding N(h) or N(h,t) from
topside ionograms using approximation theory. A gradient
technique is proposed to find the parameters of the

approximating function.

TR-2 "A Weighted Least Squares Approximation Method"

The theory of Mallinckrodt's weighted least squares

approximation method is investigated.

TR-3 "Inverse Mapping to Specified f"

A method is developed for computing values of H(f,q)

at the same frequency as scaled data points in the h'(f)

plane.




TR~-4

TR-5

TR-6

TR=7

TR-8

"Simplification of Matrix Inversion Problem"

A method is developed for solving for X in the matrix
1

equation AX = B, without computing A~

"Time Skew Problem"

The time skew problem in Horizontal Processing is

investigated.

"Optimal Step Size by One Dimensional Search"

A method is developed for optimizing the step size of a
hyper-dimensional adjustment vector that is used in the
matrix method.

"Horizontal Processing"

Some of the considerations in Horizontal Processing are

investigated.

"Computation of the Pseudoinverse"

The development and proof of a new computational algorithm

for constructing the pseudoinverse of a matrix is given.






